Martin Escardo UF things that depend on non-UF things. \begin{code} {-# OPTIONS --without-K --exact-split --safe #-} module UF-Miscelanea where open import SpartanMLTT open import Plus-Properties open import NaturalNumbers-Properties open import UF-Base open import UF-Subsingletons renaming (⊤Ω to ⊤ ; ⊥Ω to ⊥) open import UF-FunExt open import UF-Lower-FunExt open import UF-Subsingletons-FunExt open import UF-Embeddings decidable-is-collapsible : {X : 𝓤 ̇ } → decidable X → collapsible X decidable-is-collapsible (inl x) = pointed-types-are-collapsible x decidable-is-collapsible (inr u) = empty-types-are-collapsible u open import DiscreteAndSeparated discrete-is-Id-collapsible : {X : 𝓤 ̇ } → is-discrete X → Id-collapsible X discrete-is-Id-collapsible d = decidable-is-collapsible (d _ _) discrete-types-are-sets : {X : 𝓤 ̇ } → is-discrete X → is-set X discrete-types-are-sets d = Id-collapsibles-are-sets(discrete-is-Id-collapsible d) being-isolated-is-prop : FunExt → {X : 𝓤 ̇ } (x : X) → is-prop (is-isolated x) being-isolated-is-prop {𝓤} fe x i = γ i where γ : is-prop (is-isolated x) γ = Π-is-prop (fe 𝓤 𝓤) (λ x → sum-of-contradictory-props (local-hedberg _ (λ y → decidable-is-collapsible (i y)) x) (negations-are-props (fe 𝓤 𝓤₀)) (λ p n → n p)) being-discrete-is-prop : FunExt → {X : 𝓤 ̇ } → is-prop (is-discrete X) being-discrete-is-prop {𝓤} fe {X} = Π-is-prop (fe 𝓤 𝓤) (being-isolated-is-prop fe) isolated-is-h-isolated : {X : 𝓤 ̇ } (x : X) → is-isolated x → is-h-isolated x isolated-is-h-isolated {𝓤} {X} x i {y} = local-hedberg x (λ y → γ y (i y)) y where γ : (y : X) → decidable (x ≡ y) → Σ f ꞉ (x ≡ y → x ≡ y) , wconstant f γ y (inl p) = (λ _ → p) , (λ q r → refl) γ y (inr n) = id , (λ q r → 𝟘-elim (n r)) isolated-inl : {X : 𝓤 ̇ } (x : X) (i : is-isolated x) (y : X) (r : x ≡ y) → i y ≡ inl r isolated-inl x i y r = equality-cases (i y) (λ (p : x ≡ y) (q : i y ≡ inl p) → q ∙ ap inl (isolated-is-h-isolated x i p r)) (λ (h : x ≢ y) (q : i y ≡ inr h) → 𝟘-elim(h r)) isolated-inr : {X : 𝓤 ̇ } → funext 𝓤 𝓤₀ → (x : X) (i : is-isolated x) (y : X) (n : x ≢ y) → i y ≡ inr n isolated-inr fe x i y n = equality-cases (i y) (λ (p : x ≡ y) (q : i y ≡ inl p) → 𝟘-elim (n p)) (λ (m : x ≢ y) (q : i y ≡ inr m) → q ∙ ap inr (dfunext fe (λ (p : x ≡ y) → 𝟘-elim (m p)))) \end{code} The following variation of the above doesn't require function extensionality: \begin{code} isolated-inr' : {X : 𝓤 ̇ } → (x : X) (i : is-isolated x) (y : X) (n : x ≢ y) → Σ m ꞉ x ≢ y , i y ≡ inr m isolated-inr' x i y n = equality-cases (i y) (λ (p : x ≡ y) (q : i y ≡ inl p) → 𝟘-elim (n p)) (λ (m : x ≢ y) (q : i y ≡ inr m) → m , q) discrete-inl : {X : 𝓤 ̇ } (d : is-discrete X) (x y : X) (r : x ≡ y) → d x y ≡ inl r discrete-inl d x = isolated-inl x (d x) discrete-inr : funext 𝓤 𝓤₀ → {X : 𝓤 ̇ } (d : is-discrete X) (x y : X) (n : ¬ (x ≡ y)) → d x y ≡ inr n discrete-inr fe d x = isolated-inr fe x (d x) isolated-Id-is-prop : {X : 𝓤 ̇ } (x : X) → is-isolated' x → (y : X) → is-prop (y ≡ x) isolated-Id-is-prop x i = local-hedberg' x (λ y → decidable-is-collapsible (i y)) lc-maps-reflect-isolatedness : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (f : X → Y) → left-cancellable f → (x : X) → is-isolated (f x) → is-isolated x lc-maps-reflect-isolatedness f l x i y = γ (i (f y)) where γ : (f x ≡ f y) + ¬ (f x ≡ f y) → (x ≡ y) + ¬ (x ≡ y) γ (inl p) = inl (l p) γ (inr n) = inr (contrapositive (ap f) n) lc-maps-reflect-discreteness : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (f : X → Y) → left-cancellable f → is-discrete Y → is-discrete X lc-maps-reflect-discreteness f l d x = lc-maps-reflect-isolatedness f l x (d (f x)) embeddings-reflect-isolatedness : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (f : X → Y) → is-embedding f → (x : X) → is-isolated (f x) → is-isolated x embeddings-reflect-isolatedness f e x i y = lc-maps-reflect-isolatedness f (embeddings-are-lc f e) x i y embeddings-reflect-discreteness : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (f : X → Y) → is-embedding f → is-discrete Y → is-discrete X embeddings-reflect-discreteness f e = lc-maps-reflect-discreteness f (embeddings-are-lc f e) open import UF-Equiv equivs-preserve-discreteness : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (f : X → Y) → is-equiv f → is-discrete X → is-discrete Y equivs-preserve-discreteness f e = lc-maps-reflect-discreteness (inverse f e) (equivs-are-lc (inverse f e) (inverses-are-equivs f e)) equiv-to-discrete : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } → X ≃ Y → is-discrete X → is-discrete Y equiv-to-discrete (f , e) = equivs-preserve-discreteness f e Σ-is-discrete : {X : 𝓤 ̇ } → {Y : X → 𝓥 ̇ } → is-discrete X → ((x : X) → is-discrete (Y x)) → is-discrete (Σ Y) Σ-is-discrete {𝓤} {𝓥} {X} {Y} d e (x , y) (x' , y') = g (d x x') where g : decidable (x ≡ x') → decidable ((x , y) ≡ (x' , y')) g (inl p) = f (e x' (transport Y p y) y') where f : decidable (transport Y p y ≡ y') → decidable ((x , y) ≡ (x' , y')) f (inl q) = inl (to-Σ-≡ (p , q)) f (inr ψ) = inr c where c : x , y ≡ x' , y' → 𝟘 c r = ψ q where p' : x ≡ x' p' = ap pr₁ r q' : transport Y p' y ≡ y' q' = from-Σ-≡' r s : p' ≡ p s = discrete-types-are-sets d p' p q : transport Y p y ≡ y' q = transport (λ - → transport Y - y ≡ y') s q' g (inr φ) = inr (λ q → φ (ap pr₁ q)) 𝟚-is-set : is-set 𝟚 𝟚-is-set = discrete-types-are-sets 𝟚-is-discrete ℕ-is-set : is-set ℕ ℕ-is-set = discrete-types-are-sets ℕ-is-discrete 𝟚inΩ : 𝟚 → Ω 𝓤 𝟚inΩ ₀ = ⊥ 𝟚inΩ ₁ = ⊤ 𝟚inΩ-embedding : funext 𝓤 𝓤 → propext 𝓤 → is-embedding (𝟚inΩ {𝓤}) 𝟚inΩ-embedding fe pe (P , isp) (₀ , p) (₀ , q) = to-Σ-≡ (refl , Ω-is-set fe pe p q) 𝟚inΩ-embedding fe pe (P , isp) (₀ , p) (₁ , q) = 𝟘-elim (⊥-is-not-⊤ (p ∙ q ⁻¹)) 𝟚inΩ-embedding fe pe (P , isp) (₁ , p) (₀ , q) = 𝟘-elim (⊥-is-not-⊤ (q ∙ p ⁻¹)) 𝟚inΩ-embedding fe pe (P , isp) (₁ , p) (₁ , q) = to-Σ-≡ (refl , Ω-is-set fe pe p q) nonempty : 𝓤 ̇ → 𝓤 ̇ nonempty X = is-empty(is-empty X) stable : 𝓤 ̇ → 𝓤 ̇ stable X = nonempty X → X decidable-is-stable : {X : 𝓤 ̇ } → decidable X → stable X decidable-is-stable (inl x) φ = x decidable-is-stable (inr u) φ = unique-from-𝟘(φ u) stable-is-collapsible : funext 𝓤 𝓤₀ → {X : 𝓤 ̇ } → stable X → collapsible X stable-is-collapsible {𝓤} fe {X} s = (f , g) where f : X → X f x = s(λ u → u x) claim₀ : (x y : X) → (u : is-empty X) → u x ≡ u y claim₀ x y u = unique-from-𝟘(u x) claim₁ : (x y : X) → (λ u → u x) ≡ (λ u → u y) claim₁ x y = dfunext fe (claim₀ x y) g : (x y : X) → f x ≡ f y g x y = ap s (claim₁ x y) ¬¬-separated-is-Id-collapsible : funext 𝓤 𝓤₀ → {X : 𝓤 ̇ } → is-¬¬-separated X → Id-collapsible X ¬¬-separated-is-Id-collapsible fe s = stable-is-collapsible fe (s _ _) ¬¬-separated-types-are-sets : funext 𝓤 𝓤₀ → {X : 𝓤 ̇ } → is-¬¬-separated X → is-set X ¬¬-separated-types-are-sets fe s = Id-collapsibles-are-sets (¬¬-separated-is-Id-collapsible fe s) being-¬¬-separated-is-prop : funext 𝓤 𝓤 → {X : 𝓤 ̇ } → is-prop (is-¬¬-separated X) being-¬¬-separated-is-prop {𝓤} fe {X} = prop-criterion f where f : is-¬¬-separated X → is-prop (is-¬¬-separated X) f s = Π-is-prop fe (λ _ → Π-is-prop fe (λ _ → Π-is-prop fe (λ _ → ¬¬-separated-types-are-sets (lower-funext 𝓤 𝓤 fe) s))) \end{code} Find a better home for this: \begin{code} 𝟚-ℕ-embedding : 𝟚 → ℕ 𝟚-ℕ-embedding ₀ = 0 𝟚-ℕ-embedding ₁ = 1 𝟚-ℕ-embedding-is-lc : left-cancellable 𝟚-ℕ-embedding 𝟚-ℕ-embedding-is-lc {₀} {₀} refl = refl 𝟚-ℕ-embedding-is-lc {₀} {₁} r = 𝟘-elim (positive-not-zero 0 (r ⁻¹)) 𝟚-ℕ-embedding-is-lc {₁} {₀} r = 𝟘-elim (positive-not-zero 0 r) 𝟚-ℕ-embedding-is-lc {₁} {₁} refl = refl C-B-embedding : (ℕ → 𝟚) → (ℕ → ℕ) C-B-embedding α = 𝟚-ℕ-embedding ∘ α C-B-embedding-is-lc : funext 𝓤₀ 𝓤₀ → left-cancellable C-B-embedding C-B-embedding-is-lc fe {α} {β} p = dfunext fe h where h : (n : ℕ) → α n ≡ β n h n = 𝟚-ℕ-embedding-is-lc (ap (λ - → - n) p) \end{code} Added 19th Feb 2020: \begin{code} open import UF-Embeddings maps-of-props-into-h-isolated-points-are-embeddings : {P : 𝓤 ̇ } {X : 𝓥 ̇ } (f : P → X) → is-prop P → ((p : P) → is-h-isolated (f p)) → is-embedding f maps-of-props-into-h-isolated-points-are-embeddings f i j q (p , s) (p' , s') = to-Σ-≡ (i p p' , j p' _ s') maps-of-props-into-isolated-points-are-embeddings : {P : 𝓤 ̇ } {X : 𝓥 ̇ } (f : P → X) → is-prop P → ((p : P) → is-isolated (f p)) → is-embedding f maps-of-props-into-isolated-points-are-embeddings f i j = maps-of-props-into-h-isolated-points-are-embeddings f i (λ p → isolated-is-h-isolated (f p) (j p)) \end{code}