Martin Escardo In univalent logic, as opposed to Curry-Howard logic, a proposition is a prop or a type such that any two of its elements are identified. https://www.newton.ac.uk/files/seminar/20170711100011001-1009756.pdf https://unimath.github.io/bham2017/uf.pdf About (sub)singletons using function extensionality. \begin{code} {-# OPTIONS --without-K --exact-split --safe #-} module UF-Subsingletons-FunExt where open import SpartanMLTT open import UF-Base open import UF-Subsingletons renaming (⊤Ω to ⊤ ; ⊥Ω to ⊥) open import UF-FunExt open import UF-Lower-FunExt open import UF-LeftCancellable open import UF-Retracts Π-is-prop : funext 𝓤 𝓥 → {X : 𝓤 ̇ } {A : X → 𝓥 ̇ } → ((x : X) → is-prop (A x)) → is-prop (Π A) Π-is-prop fe i f g = dfunext fe (λ x → i x (f x) (g x)) Π-is-prop' : funext 𝓤 𝓥 → {X : 𝓤 ̇ } {A : X → 𝓥 ̇ } → ((x : X) → is-prop (A x)) → is-prop ({x : X} → A x) Π-is-prop' fe {X} {A} i = retract-of-prop retr (Π-is-prop fe i) where retr : retract ({x : X} → A x) of Π A retr = (λ f {x} → f x) , (λ g x → g {x}) , (λ x → refl) Π-is-singleton : funext 𝓤 𝓥 → {X : 𝓤 ̇ } {A : X → 𝓥 ̇ } → ((x : X) → is-singleton (A x)) → is-singleton (Π A) Π-is-singleton fe i = (λ x → pr₁ (i x)) , (λ f → dfunext fe (λ x → pr₂ (i x) (f x))) being-prop-is-prop : {X : 𝓤 ̇ } → funext 𝓤 𝓤 → is-prop (is-prop X) being-prop-is-prop {𝓤} {X} fe f g = c₁ where l : is-set X l = props-are-sets f c : (x y : X) → f x y ≡ g x y c x y = l (f x y) (g x y) c₀ : (x : X) → f x ≡ g x c₀ x = dfunext fe (c x) c₁ : f ≡ g c₁ = dfunext fe c₀ identifications-of-props-are-props : propext 𝓤 → funext 𝓤 𝓤 → (P : 𝓤 ̇ ) → is-prop P → (X : 𝓤 ̇ ) → is-prop (X ≡ P) identifications-of-props-are-props {𝓤} pe fe P i = local-hedberg' P (λ X → g X ∘ f X , k X) where f : (X : 𝓤 ̇ ) → X ≡ P → is-prop X × (X ⇔ P) f X refl = i , (id , id) g : (X : 𝓤 ̇ ) → is-prop X × (X ⇔ P) → X ≡ P g X (l , φ , γ) = pe l i φ γ j : (X : 𝓤 ̇ ) → is-prop (is-prop X × (X ⇔ P)) j X = ×-prop-criterion ((λ _ → being-prop-is-prop fe) , (λ l → ×-is-prop (Π-is-prop fe (λ x → i)) (Π-is-prop fe (λ p → l)))) k : (X : 𝓤 ̇ ) → wconstant (g X ∘ f X) k X p q = ap (g X) (j X (f X p) (f X q)) being-singleton-is-prop : funext 𝓤 𝓤 → {X : 𝓤 ̇ } → is-prop (is-singleton X) being-singleton-is-prop fe {X} (x , φ) (y , γ) = to-Σ-≡ (φ y , dfunext fe λ z → iss {y} {z} _ _) where isp : is-prop X isp = singletons-are-props (y , γ) iss : is-set X iss = props-are-sets isp ∃!-is-prop : {X : 𝓤 ̇ } {A : X → 𝓥 ̇ } → funext (𝓤 ⊔ 𝓥) (𝓤 ⊔ 𝓥) → is-prop (∃! A) ∃!-is-prop fe = being-singleton-is-prop fe Π-is-set : funext 𝓤 𝓥 → {X : 𝓤 ̇ } {A : X → 𝓥 ̇ } → ((x : X) → is-set (A x)) → is-set (Π A) Π-is-set {𝓤} {𝓥} fe {X} {A} isa {f} {g} = b where a : is-prop (f ∼ g) a p q = dfunext fe λ x → isa x (p x) (q x) b : is-prop (f ≡ g) b = left-cancellable-reflects-is-prop happly (section-lc happly (pr₂ (fe f g))) a \end{code} The meat of the following proof is being-set-is-prop'. The rest of the code is to deal with implicit arguments in conjunction with function extensionality. The solution is not ideal. Ideally, functions with implicit parameters should be the same as their versions with explicit parameters. \begin{code} being-set-is-prop : funext 𝓤 𝓤 → {X : 𝓤 ̇ } → is-prop (is-set X) being-set-is-prop {𝓤} fe {X} = h where is-set' : 𝓤 ̇ → 𝓤 ̇ is-set' X = (x y : X) → is-prop (x ≡ y) being-set-is-prop' : {X : 𝓤 ̇ } → funext 𝓤 𝓤 → is-prop (is-set' X) being-set-is-prop' fe = Π-is-prop fe (λ x → Π-is-prop fe (λ y → being-prop-is-prop fe)) f : {X : 𝓤 ̇ } → is-set' X → is-set X f s {x} {y} = s x y g : {X : 𝓤 ̇ } → is-set X → is-set' X g s x y = s {x} {y} h : is-prop (is-set X) h = subtype-of-prop-is-prop g (ap f) (being-set-is-prop' fe) negations-are-props : {X : 𝓤 ̇ } → funext 𝓤 𝓤₀ → is-prop (¬ X) negations-are-props fe = Π-is-prop fe (λ x → 𝟘-is-prop) decidability-of-prop-is-prop : funext 𝓤 𝓤₀ → {P : 𝓤 ̇ } → is-prop P → is-prop (P + ¬ P) decidability-of-prop-is-prop fe₀ i = sum-of-contradictory-props i (negations-are-props fe₀) (λ p u → u p) Ω-extensionality : funext 𝓤 𝓤 → propext 𝓤 → {p q : Ω 𝓤} → (p holds → q holds) → (q holds → p holds) → p ≡ q Ω-extensionality {𝓤} fe pe {p} {q} f g = to-Σ-≡ (pe (holds-is-prop p) (holds-is-prop q) f g , being-prop-is-prop fe _ _) Ω-is-set : funext 𝓤 𝓤 → propext 𝓤 → is-set (Ω 𝓤) Ω-is-set {𝓤} fe pe = Id-collapsibles-are-sets pc where A : (p q : Ω 𝓤) → 𝓤 ̇ A p q = (p holds → q holds) × (q holds → p holds) A-is-prop : (p q : Ω 𝓤) → is-prop (A p q) A-is-prop p q = Σ-is-prop (Π-is-prop fe (λ _ → holds-is-prop q)) (λ _ → Π-is-prop fe (λ _ → holds-is-prop p)) g : (p q : Ω 𝓤) → p ≡ q → A p q g p q e = (b , c) where a : p holds ≡ q holds a = ap _holds e b : p holds → q holds b = transport id a c : q holds → p holds c = transport id (a ⁻¹) h : (p q : Ω 𝓤) → A p q → p ≡ q h p q (u , v) = Ω-extensionality fe pe u v f : (p q : Ω 𝓤) → p ≡ q → p ≡ q f p q e = h p q (g p q e) wconstant-f : (p q : Ω 𝓤) (d e : p ≡ q) → f p q d ≡ f p q e wconstant-f p q d e = ap (h p q) (A-is-prop p q (g p q d) (g p q e)) pc : {p q : Ω 𝓤} → Σ f ꞉ (p ≡ q → p ≡ q) , wconstant f pc {p} {q} = (f p q , wconstant-f p q) powersets-are-sets'' : funext 𝓤 (𝓥 ⁺) → funext 𝓥 𝓥 → propext 𝓥 → {A : 𝓤 ̇ } → is-set (A → Ω 𝓥) powersets-are-sets'' fe fe' pe = Π-is-set fe (λ x → Ω-is-set fe' pe) powersets-are-sets : funext 𝓥 (𝓥 ⁺) → propext 𝓥 → {A : 𝓥 ̇ } → is-set (A → Ω 𝓥) powersets-are-sets {𝓥} fe = powersets-are-sets'' fe (lower-funext 𝓥 (𝓥 ⁺) fe) empty-types-are-props : {X : 𝓤 ̇ } → ¬ X → is-prop X empty-types-are-props f x = 𝟘-elim (f x) equal-𝟘-is-empty : {X : 𝓤 ̇ } → X ≡ 𝟘 → ¬ X equal-𝟘-is-empty e x = 𝟘-elim (transport id e x) empty-types-are-≡-𝟘 : funext 𝓤 𝓤₀ → propext 𝓤 → {X : 𝓤 ̇ } → ¬ X → X ≡ 𝟘 empty-types-are-≡-𝟘 fe pe f = pe (empty-types-are-props f) 𝟘-is-prop (λ x → 𝟘-elim (f x)) 𝟘-elim not : funext 𝓤 𝓤₀ → Ω 𝓤 → Ω 𝓤 not fe (P , i) = (¬ P , negations-are-props fe) equal-⊤-is-true : (P : 𝓤 ̇ ) (i : is-prop P) → (P , i) ≡ ⊤ → P equal-⊤-is-true P hp r = f * where s : 𝟙 ≡ P s = (ap pr₁ r)⁻¹ f : 𝟙 → P f = transport id s \end{code} TODO. In the following, rather than using a P and i, use a p = (P , i) in Ω 𝓤. \begin{code} holds-gives-equal-𝟙 : propext 𝓤 → (P : 𝓤 ̇ ) → is-prop P → P → P ≡ 𝟙 holds-gives-equal-𝟙 pe P i p = pe i 𝟙-is-prop unique-to-𝟙 (λ _ → p) true-is-equal-⊤ : propext 𝓤 → funext 𝓤 𝓤 → (P : 𝓤 ̇ ) (i : is-prop P) → P → (P , i) ≡ ⊤ true-is-equal-⊤ pe fe P i p = to-Σ-≡ (holds-gives-equal-𝟙 pe P i p , being-prop-is-prop fe _ _) holds-gives-equal-⊤ : propext 𝓤 → funext 𝓤 𝓤 → (p : Ω 𝓤) → p holds → p ≡ ⊤ holds-gives-equal-⊤ pe fe (P , i) = true-is-equal-⊤ pe fe P i equal-𝟙-gives-holds : (P : 𝓤 ̇ ) → P ≡ 𝟙 → P equal-𝟙-gives-holds P r = Idtofun (r ⁻¹) * equal-⊤-gives-holds : (p : Ω 𝓤) → p ≡ ⊤ → p holds equal-⊤-gives-holds p r = equal-𝟙-gives-holds (p holds) (ap pr₁ r) not-𝟘-is-𝟙 : funext 𝓤 𝓤₀ → propext 𝓤 → (¬ 𝟘) ≡ 𝟙 not-𝟘-is-𝟙 fe pe = pe (negations-are-props fe) 𝟙-is-prop (λ _ → *) (λ _ z → 𝟘-elim z) equal-⊥-gives-not-equal-⊤ : (fe : Fun-Ext) (pe : propext 𝓤) (p : Ω 𝓤) → p ≡ ⊥ → not fe p ≡ ⊤ equal-⊥-gives-not-equal-⊤ fe pe p r = to-subtype-≡ (λ _ → being-prop-is-prop fe) t where s : p holds ≡ 𝟘 s = ap _holds r t : ¬ (p holds) ≡ 𝟙 t = ap ¬_ s ∙ not-𝟘-is-𝟙 fe pe false-is-equal-⊥ : propext 𝓤 → funext 𝓤 𝓤 → (P : 𝓤 ̇ ) (i : is-prop P) → ¬ P → (P , i) ≡ ⊥ false-is-equal-⊥ pe fe P i f = to-Σ-≡ (pe i 𝟘-is-prop (λ p → 𝟘-elim (f p)) 𝟘-elim , being-prop-is-prop fe _ _) not-equal-⊤-gives-equal-⊥ : (fe : Fun-Ext) (pe : propext 𝓤) (p : Ω 𝓤) → not fe p ≡ ⊤ → p ≡ ⊥ not-equal-⊤-gives-equal-⊥ fe pe p r = to-subtype-≡ (λ _ → being-prop-is-prop fe) t where f : (not fe p) holds f = Idtofun (ap _holds r ⁻¹) * t : p holds ≡ 𝟘 t = empty-types-are-≡-𝟘 fe pe f Ω-ext : propext 𝓤 → funext 𝓤 𝓤 → {p q : Ω 𝓤} → (p ≡ ⊤ → q ≡ ⊤) → (q ≡ ⊤ → p ≡ ⊤) → p ≡ q Ω-ext pe fe {(P , i)} {(Q , j)} f g = to-Σ-≡ (pe i j I II , being-prop-is-prop fe _ _ ) where I : P → Q I x = equal-⊤-is-true Q j (f (true-is-equal-⊤ pe fe P i x)) II : Q → P II y = equal-⊤-is-true P i (g (true-is-equal-⊤ pe fe Q j y)) Ω-discrete-gives-EM : funext 𝓤 𝓤 → propext 𝓤 → ((p q : Ω 𝓤) → decidable (p ≡ q)) → (P : 𝓤 ̇ ) → is-prop P → P + ¬ P Ω-discrete-gives-EM {𝓤} fe pe δ P i = f (δ p q) where p q : Ω 𝓤 p = (P , i) q = (𝟙 , 𝟙-is-prop) f : decidable (p ≡ q) → P + ¬ P f (inl e) = inl (equal-𝟙-gives-holds P (ap pr₁ e)) f (inr ν) = inr (λ (x : P) → ν (to-subtype-≡ (λ _ → being-prop-is-prop fe) (holds-gives-equal-𝟙 pe P i x))) \end{code} Without excluded middle, we have that: \begin{code} no-truth-values-other-than-⊥-or-⊤ : funext 𝓤 𝓤 → propext 𝓤 → ¬ (Σ p ꞉ Ω 𝓤 , (p ≢ ⊥) × (p ≢ ⊤)) no-truth-values-other-than-⊥-or-⊤ fe pe ((P , i) , (f , g)) = φ u where u : ¬ P u p = g l where l : (P , i) ≡ ⊤ l = Ω-extensionality fe pe unique-to-𝟙 (λ _ → p) φ : ¬¬ P φ u = f l where l : (P , i) ≡ ⊥ l = Ω-extensionality fe pe (λ p → 𝟘-elim (u p)) unique-from-𝟘 has-three-distinct-points : 𝓤 ̇ → 𝓤 ̇ has-three-distinct-points X = Σ (x , y , z) ꞉ X × X × X , (x ≢ y) × (y ≢ z) × (z ≢ x) no-three-distinct-propositions : funext 𝓤 𝓤 → propext 𝓤 → ¬ has-three-distinct-points (Ω 𝓤) no-three-distinct-propositions fe pe ((p , q , r) , u , v , w) = XI where I : p ≢ ⊥ I a = no-truth-values-other-than-⊥-or-⊤ fe pe (q , II , III) where II : q ≢ ⊥ II b = u (a ∙ b ⁻¹) III : q ≢ ⊤ III c = no-truth-values-other-than-⊥-or-⊤ fe pe (r , IV , V) where IV : r ≢ ⊥ IV d = w (d ∙ a ⁻¹) V : r ≢ ⊤ V e = v (c ∙ e ⁻¹) VI : p ≢ ⊤ VI a = no-truth-values-other-than-⊥-or-⊤ fe pe (q , VII , X) where VII : q ≢ ⊥ VII b = no-truth-values-other-than-⊥-or-⊤ fe pe (r , VIII , IX) where VIII : r ≢ ⊥ VIII c = v (b ∙ c ⁻¹) IX : r ≢ ⊤ IX d = w (d ∙ a ⁻¹) X : q ≢ ⊤ X e = u (a ∙ e ⁻¹) XI : 𝟘 XI = no-truth-values-other-than-⊥-or-⊤ fe pe (p , I , VI) \end{code} (The above function was added 19th March 2021.) The above implies that if Fin n is embedded in Ω 𝓤, then n ≤ 2. That is, every finite subset of Ω has at most two elements. See the module Fin.lagda. In the above and in the following, 𝟘-elim is used to coerce from 𝟘 {𝓤} to 𝟘 {𝓤₀} as this is where negations take values in. \begin{code} ⊥-is-not-⊤ : ⊥ {𝓤} ≢ ⊤ {𝓤} ⊥-is-not-⊤ b = 𝟘-elim (𝟘-is-not-𝟙 (ap _holds b)) \end{code} Sometimes it is convenient to work with the type of true propositions, which is a singleton and hence a subsingleton. But we will leave this type nameless: \begin{code} 𝟙-is-true-props-center : funext 𝓤 𝓤 → propext 𝓤 → (σ : Σ P ꞉ 𝓤 ̇ , is-prop P × P) → (𝟙 , 𝟙-is-prop , *) ≡ σ 𝟙-is-true-props-center fe pe = γ where φ : ∀ P → is-prop (is-prop P × P) φ P (i , p) = ×-is-prop (being-prop-is-prop fe) i (i , p) γ : ∀ σ → (𝟙 , 𝟙-is-prop , *) ≡ σ γ (P , i , p) = to-subtype-≡ φ s where s : 𝟙 ≡ P s = pe 𝟙-is-prop i (λ _ → p) (λ _ → *) the-true-props-form-a-singleton-type : funext 𝓤 𝓤 → propext 𝓤 → is-singleton (Σ P ꞉ 𝓤 ̇ , is-prop P × P) the-true-props-form-a-singleton-type fe pe = (𝟙 , 𝟙-is-prop , *) , 𝟙-is-true-props-center fe pe the-true-props-form-a-prop : funext 𝓤 𝓤 → propext 𝓤 → is-prop (Σ P ꞉ 𝓤 ̇ , is-prop P × P) the-true-props-form-a-prop fe pe = singletons-are-props (the-true-props-form-a-singleton-type fe pe) \end{code} Added 16th June 2020. (Should have added this ages ago to avoid boiler-plate code.) \begin{code} Π₂-is-prop : Fun-Ext → {X : 𝓤 ̇ } {Y : X → 𝓥 ̇ } {Z : (x : X) → Y x → 𝓦 ̇ } → ((x : X) (y : Y x) → is-prop (Z x y)) → is-prop ((x : X) (y : Y x) → Z x y) Π₂-is-prop fe i = Π-is-prop fe (λ x → Π-is-prop fe (i x)) Π₃-is-prop : Fun-Ext → {X : 𝓤 ̇ } {Y : X → 𝓥 ̇ } {Z : (x : X) → Y x → 𝓦 ̇ } {T : (x : X) (y : Y x) → Z x y → 𝓣 ̇ } → ((x : X) (y : Y x) (z : Z x y) → is-prop (T x y z)) → is-prop ((x : X) (y : Y x) (z : Z x y) → T x y z) Π₃-is-prop fe i = Π-is-prop fe (λ x → Π₂-is-prop fe (i x)) Π₄-is-prop : Fun-Ext → {𝓥₀ 𝓥₁ 𝓥₂ 𝓥₃ : Universe} {A : 𝓤 ̇ } {B : A → 𝓥₀ ̇ } {C : (a : A) → B a → 𝓥₁ ̇ } {D : (a : A) (b : B a) → C a b → 𝓥₂ ̇ } {E : (a : A) (b : B a) (c : C a b) → D a b c → 𝓥₃ ̇ } → ((a : A) (b : B a) (c : C a b) (d : D a b c) → is-prop (E a b c d)) → is-prop ((a : A) (b : B a) (c : C a b) (d : D a b c) → E a b c d) Π₄-is-prop fe i = Π-is-prop fe (λ x → Π₃-is-prop fe (i x)) Π₅-is-prop : Fun-Ext → {𝓥₀ 𝓥₁ 𝓥₂ 𝓥₃ 𝓥₄ : Universe} {A : 𝓤 ̇ } {B : A → 𝓥₀ ̇ } {C : (a : A) → B a → 𝓥₁ ̇ } {D : (a : A) (b : B a) → C a b → 𝓥₂ ̇ } {E : (a : A) (b : B a) (c : C a b) → D a b c → 𝓥₃ ̇ } {F : (a : A) (b : B a) (c : C a b) (d : D a b c) → E a b c d → 𝓥₄ ̇ } → ((a : A) (b : B a) (c : C a b) (d : D a b c) (e : E a b c d) → is-prop (F a b c d e)) → is-prop ((a : A) (b : B a) (c : C a b) (d : D a b c) (e : E a b c d) → F a b c d e) Π₅-is-prop fe i = Π-is-prop fe (λ x → Π₄-is-prop fe (i x)) \end{code}