\begin{code} {-# OPTIONS --without-K --exact-split --safe #-} module UF-Retracts where open import SpartanMLTT open import UF-Base open import UF-Subsingletons open import AlternativePlus has-section : {X : π€ Μ } {Y : π₯ Μ } β (X β Y) β π€ β π₯ Μ has-section r = Ξ£ s κ (codomain r β domain r), r β s βΌ id is-section : {X : π€ Μ } {Y : π₯ Μ } β (X β Y) β π€ β π₯ Μ is-section s = Ξ£ r κ (codomain s β domain s), r β s βΌ id sections-are-lc : {X : π€ Μ } {Y : π₯ Μ } (s : X β Y) β is-section s β left-cancellable s sections-are-lc s (r , rs) {x} {x'} p = (rs x)β»ΒΉ β ap r p β rs x' retract_of_ : π€ Μ β π₯ Μ β π€ β π₯ Μ retract Y of X = Ξ£ r κ (X β Y) , has-section r retraction : {X : π€ Μ } {Y : π₯ Μ } β retract X of Y β (Y β X) retraction (r , s , rs) = r section : {X : π€ Μ } {Y : π₯ Μ } β retract X of Y β (X β Y) section (r , s , rs) = s retract-condition : {X : π€ Μ } {Y : π₯ Μ } (Ο : retract X of Y) β retraction Ο β section Ο βΌ id retract-condition (r , s , rs) = rs retraction-has-section : {X : π€ Μ } {Y : π₯ Μ } (Ο : retract X of Y) β has-section (retraction Ο) retraction-has-section (r , h) = h retract-of-singleton : {X : π€ Μ } {Y : π₯ Μ } β retract Y of X β is-singleton X β is-singleton Y retract-of-singleton (r , s , rs) (c , Ο) = r c , (Ξ» y β ap r (Ο (s y)) β rs y) retract-of-prop : {X : π€ Μ } {Y : π₯ Μ } β retract Y of X β is-prop X β is-prop Y retract-of-prop (r , s , rs) = subtype-of-prop-is-prop s (sections-are-lc s (r , rs)) Ξ£-is-set : {X : π€ Μ } {A : X β π₯ Μ } β is-set X β ((x : X) β is-set (A x)) β is-set (Ξ£ A) Ξ£-is-set {π€} {π₯} {X} {A} i j {Ο} {Ο} = Ξ³ where S = Ξ£ p κ prβ Ο β‘ prβ Ο , transport A p (prβ Ο) β‘ prβ Ο a : is-prop S a = Ξ£-is-prop i (Ξ» p β j (prβ Ο)) b : retract (Ο β‘ Ο) of S b = to-Ξ£-β‘ , from-Ξ£-β‘ , tofrom-Ξ£-β‘ Ξ³ : is-prop (Ο β‘ Ο) Ξ³ = retract-of-prop b a identity-retraction : {X : π€ Μ } β retract X of X identity-retraction = id , id , Ξ» x β refl has-section-closed-under-βΌ : {X : π€ Μ } {Y : π₯ Μ } (f g : X β Y) β has-section f β g βΌ f β has-section g has-section-closed-under-βΌ {π€} {π₯} {X} {Y} f g (s , fs) h = (s , Ξ» y β g (s y) β‘β¨ h (s y) β© f (s y) β‘β¨ fs y β© y β) has-section-closed-under-βΌ' : {X : π€ Μ } {Y : π₯ Μ } {f g : X β Y} β has-section f β f βΌ g β has-section g has-section-closed-under-βΌ' ise h = has-section-closed-under-βΌ _ _ ise (Ξ» x β (h x)β»ΒΉ) is-section-closed-under-βΌ : {X : π€ Μ } {Y : π₯ Μ } (f g : X β Y) β is-section f β g βΌ f β is-section g is-section-closed-under-βΌ {π€} {π₯} {X} {Y} f g (r , rf) h = (r , Ξ» x β r (g x) β‘β¨ ap r (h x) β© r (f x) β‘β¨ rf x β© x β) is-section-closed-under-βΌ' : {X : π€ Μ } {Y : π₯ Μ } {f g : X β Y} β is-section f β f βΌ g β is-section g is-section-closed-under-βΌ' ise h = is-section-closed-under-βΌ _ _ ise (Ξ» x β (h x)β»ΒΉ) \end{code} Surjection expressed in Curry-Howard logic amounts to retraction. \begin{code} has-section' : {X : π€ Μ } {Y : π₯ Μ } (f : X β Y) β π€ β π₯ Μ has-section' f = (y : codomain f) β Ξ£ x κ domain f , f x β‘ y retract_Of_ : π€ Μ β π₯ Μ β π€ β π₯ Μ retract Y Of X = Ξ£ f κ (X β Y) , has-section' f retract-of-retract-Of : {X : π€ Μ } {Y : π₯ Μ } β retract Y of X β retract Y Of X retract-of-retract-Of {π€} {π₯} {X} {Y} Ο = (retraction Ο , hass) where hass : (y : Y) β Ξ£ x κ X , retraction Ο x β‘ y hass y = section Ο y , retract-condition Ο y retract-Of-retract-of : {X : π€ Μ } {Y : π₯ Μ } β retract Y Of X β retract Y of X retract-Of-retract-of {π€} {π₯} {X} {Y} (f , hass) = (f , Ο) where Ο : Ξ£ s κ (Y β X) , f β s βΌ id Ο = (Ξ» y β prβ (hass y)) , (Ξ» y β prβ (hass y)) retracts-compose : {X : π€ Μ } {Y : π₯ Μ } {Z : π¦ Μ } β retract Y of X β retract Z of Y β retract Z of X retracts-compose (r , s , rs) (r' , s' , rs') = r' β r , s β s' , Ξ» z β r' (r (s (s' z))) β‘β¨ ap r' (rs (s' z)) β© r' (s' z) β‘β¨ rs' z β© z β Γ-retract : {X : π€ Μ } {Y : π₯ Μ } {A : π¦ Μ } {B : π£ Μ } β retract X of A β retract Y of B β retract (X Γ Y) of (A Γ B) Γ-retract {π€} {π₯} {π¦} {π£} {X} {Y} {A} {B} (r , s , rs) (t , u , tu) = f , g , fg where f : A Γ B β X Γ Y f (a , b) = (r a , t b) g : X Γ Y β A Γ B g (x , y) = s x , u y fg : (z : X Γ Y) β f (g z) β‘ z fg (x , y) = to-Γ-β‘ (rs x) (tu y) +-retract : {X : π€ Μ } {Y : π¦ Μ } {A : π₯ Μ } {B : π£ Μ } β retract X of A β retract Y of B β retract (X + Y) of (A + B) +-retract {π€} {π₯} {π¦} {π£} {X} {Y} {A} {B} (r , s , rs) (t , u , tu) = f , g , fg where f : A + B β X + Y f (inl a) = inl (r a) f (inr b) = inr (t b) g : X + Y β A + B g (inl x) = inl (s x) g (inr y) = inr (u y) fg : (p : X + Y) β f (g p) β‘ p fg (inl x) = ap inl (rs x) fg (inr y) = ap inr (tu y) +'-retract-of-+ : {X Y : π€ Μ } β retract (X +' Y) of (X + Y) +'-retract-of-+ {π€} {X} {Y} = f , g , fg where f : X + Y β X +' Y f (inl x) = β , x f (inr y) = β , y g : X +' Y β X + Y g (β , x) = inl x g (β , y) = inr y fg : (z : X +' Y) β f (g z) β‘ z fg (β , x) = refl fg (β , y) = refl +'-retract : {X Y : π€ Μ } {A B : π₯ Μ } β retract X of A β retract Y of B β retract (X +' Y) of (A +' B) +'-retract {π€} {π₯} {X} {Y} {A} {B} (r , s , rs) (t , u , tu) = f , g , fg where f : A +' B β X +' Y f (β , a) = β , r a f (β , b) = β , t b g : X +' Y β A +' B g (β , x) = β , s x g (β , y) = β , u y fg : (p : X +' Y) β f (g p) β‘ p fg (β , x) = ap (Ξ» - β (β , -)) (rs x) fg (β , y) = ap (Ξ» - β (β , -)) (tu y) Ξ£-reindex-retract : {X : π€ Μ } {Y : π₯ Μ } {A : X β π¦ Μ } (r : Y β X) β has-section r β retract (Ξ£ A) of (Ξ£ (A β r)) Ξ£-reindex-retract {π€} {π₯} {π¦} {X} {Y} {A} r (s , rs) = Ξ³ , Ο , Ξ³Ο where Ξ³ : (Ξ£ y κ Y , A (r y)) β Ξ£ A Ξ³ (y , a) = (r y , a) Ο : Ξ£ A β Ξ£ y κ Y , A (r y) Ο (x , a) = (s x , back-transport A (rs x) a) Ξ³Ο : (Ο : Ξ£ A) β Ξ³ (Ο Ο) β‘ Ο Ξ³Ο (x , a) = to-Ξ£-β‘ (rs x , p) where p : transport A (rs x) (back-transport A (rs x) a) β‘ a p = back-and-forth-transport (rs x) Ξ£-retract : {X : π€ Μ } (A : X β π₯ Μ ) (B : X β π¦ Μ ) β ((x : X) β retract (A x) of (B x)) β retract (Ξ£ A) of (Ξ£ B) Ξ£-retract {π€} {π₯} {π¦} {X} A B Ο = NatΞ£ R , NatΞ£ S , rs where R : (x : X) β B x β A x R x = retraction (Ο x) S : (x : X) β A x β B x S x = section (Ο x) RS : (x : X) (a : A x) β R x (S x a) β‘ a RS x = retract-condition (Ο x) rs : (Ο : Ξ£ A) β NatΞ£ R (NatΞ£ S Ο) β‘ Ο rs (x , a) = to-Ξ£-β‘' (RS x a) retract-π+π-of-π : retract π + π of π retract-π+π-of-π = f , (g , fg) where f : π β π {π€β} + π {π€β} f = π-cases (inl *) (inr *) g : π + π β π g = cases (Ξ» x β β) (Ξ» x β β) fg : (x : π + π) β f (g x) β‘ x fg (inl *) = refl fg (inr *) = refl \end{code} TODO. Several retractions here are actually equivalences. So some code should be generalized and moved to an equivalences module. Similarly, some retracts proved here are also shown as equivalences in other modules, and hence there is some amount of repetition that should be removed. This is the result of (1) merging initially independent developments, and (2) work over many years with uncontrolled growth. \begin{code} Ξ£-retractβ : {X : π€ Μ } {Y : X β π₯ Μ } {A : π¦ Μ } {B : π£ Μ } β retract X of A β ((x : X) β retract (Y x) of B) β retract (Ξ£ Y) of (A Γ B) Ξ£-retractβ {π€} {π₯} {π¦} {π£} {X} {Y} {A} {B} (r , s , rs) R = f , g , gf where Ο : (x : X) β B β Y x Ο x = retraction (R x) Ξ³ : (x : X) β Y x β B Ξ³ x = section (R x) ΟΞ³ : (x : X) β (y : Y x) β Ο x (Ξ³ x y) β‘ y ΟΞ³ x = retract-condition (R x) f : A Γ B β Ξ£ Y f (a , b) = r a , Ο (r a) b g : Ξ£ Y β A Γ B g (x , y) = s x , Ξ³ x y gf : (z : Ξ£ Y) β f (g z) β‘ z gf (x , y) = to-Ξ£-β‘ (rs x , l (rs x)) where l : {x' : X} (p : x' β‘ x) β transport Y p (Ο x' (Ξ³ x y)) β‘ y l refl = ΟΞ³ x y retract-π+π-of-β : retract π + π of β retract-π+π-of-β = r , s , rs where r : β β π + π r zero = inl * r (succ _) = inr * s : π + π β β s (inl *) = zero s (inr *) = succ zero rs : (z : π {π€β} + π {π€β}) β r (s z) β‘ z rs (inl *) = refl rs (inr *) = refl \end{code} Added 5th March 2019. Notation for composing retracts. I should have added this ages ago to make the above proofs more readable. \begin{code} _β_ : π€ Μ β π₯ Μ β π€ β π₯ Μ Y β X = retract Y of X _ββ¨_β©_ : (X : π€ Μ ) {Y : π₯ Μ } {Z : π¦ Μ } β X β Y β Y β Z β X β Z _ ββ¨ d β© e = retracts-compose e d β-refl : (X : π€ Μ ) β X β X β-refl X = identity-retraction {universe-of X} {X} _β : (X : π€ Μ ) β X β X _β = β-refl \end{code} Fixities: \begin{code} infix 0 _β_ infix 1 _β infixr 0 _ββ¨_β©_ \end{code} Added 20 February 2020 by Tom de Jong. \begin{code} ap-of-section-is-section : {X : π€ Μ } {Y : π₯ Μ } (s : X β Y) β is-section s β (x x' : X) β is-section (ap s {x} {x'}) ap-of-section-is-section {π€} {π₯} {X} {Y} s (r , rs) x x' = Ο , Οap where Ο : s x β‘ s x' β x β‘ x' Ο q = x β‘β¨ (rs x) β»ΒΉ β© r (s x) β‘β¨ ap r q β© r (s x') β‘β¨ rs x' β© x' β Οap : (p : x β‘ x') β Ο (ap s p) β‘ p Οap p = Ο (ap s p) β‘β¨ by-definition β© (rs x) β»ΒΉ β (ap r (ap s p) β rs x') β‘β¨ i β© (rs x) β»ΒΉ β ap r (ap s p) β rs x' β‘β¨ ii β© (rs x) β»ΒΉ β ap (r β s) p β rs x' β‘β¨ iii β© ap id p β‘β¨ (ap-id-is-id' p)β»ΒΉ β© p β where i = βassoc ((rs x) β»ΒΉ) (ap r (ap s p)) (rs x') β»ΒΉ ii = ap (Ξ» - β (rs x) β»ΒΉ β - β rs x') (ap-ap s r p) iii = homotopies-are-natural'' (r β s) id rs {x} {x'} {p} \end{code} I would phrase this in terms of fibers, but fiber is defined in UF-Equiv which imports this file. \begin{code} Ξ£-section-retract : {X : π€ Μ } {Y : π₯ Μ } {Z : π¦ Μ } (Ο : Y β Z) (g : X β Y) β (y : Y) β (Ξ£ x κ X , g x β‘ y) β (Ξ£ x κ X , section Ο (g x) β‘ section Ο y) Ξ£-section-retract {π€} {π₯} {π¦} {X} {Y} {Z} (r , s , rs) g y = Ξ£-retract (Ξ» x β g x β‘ y) (Ξ» x β s (g x) β‘ s y) Ξ³ where Ξ³ : (x : X) β (g x β‘ y) β (s (g x) β‘ s y) Ξ³ x = Ο , (Ο , ΟΟ) where Ο : g x β‘ y β s (g x) β‘ s y Ο = ap s Ο : s (g x) β‘ s y β g x β‘ y Ο = prβ (ap-of-section-is-section s (r , rs) (g x) y) ΟΟ : (p : g x β‘ y) β Ο (Ο p) β‘ p ΟΟ = prβ (ap-of-section-is-section s ((r , rs)) (g x) y) \end{code}