Natural numbers
\begin{code}
{-# OPTIONS --without-K --exact-split --safe #-}
module NaturalNumbers-Properties where
open import Universes
open import NaturalNumbers
open import Negation
open import Id
open import Empty
open import Unit
open import Unit-Properties
pred : ℕ → ℕ
pred 0 = 0
pred (succ n) = n
succ-lc : {i j : ℕ} → succ i ≡ succ j → i ≡ j
succ-lc = ap pred
positive-not-zero : (x : ℕ) → succ x ≢ 0
positive-not-zero x p = 𝟙-is-not-𝟘 (g p)
where
f : ℕ → 𝓤₀ ̇
f 0 = 𝟘
f (succ x) = 𝟙
g : succ x ≡ 0 → 𝟙 ≡ 𝟘
g = ap f
zero-not-positive : (x : ℕ) → 0 ≢ succ x
zero-not-positive x p = positive-not-zero x (p ⁻¹)
succ-no-fp : (n : ℕ) → n ≡ succ n → 𝟘 {𝓤}
succ-no-fp zero p = 𝟘-elim (positive-not-zero 0 (p ⁻¹))
succ-no-fp (succ n) p = succ-no-fp n (succ-lc p)
ℕ-cases : {P : ℕ → 𝓦 ̇ } (n : ℕ)
→ (n ≡ zero → P n) → ((m : ℕ) → n ≡ succ m → P n) → P n
ℕ-cases {𝓦} {P} zero c₀ cₛ = c₀ refl
ℕ-cases {𝓦} {P} (succ n) c₀ cₛ = cₛ n refl
\end{code}