Martin Escardo 1st May 2020. This is ported from the Midlands Graduate School 2019 lecture notes https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/HoTT-UF-Agda.html https://github.com/martinescardo/HoTT-UF-Agda-Lecture-Notes \begin{code} {-# OPTIONS --without-K --exact-split --safe #-} module MGS-More-FunExt-Consequences where open import MGS-HAE public open import MGS-Subsingleton-Theorems public being-subsingleton-is-subsingleton : dfunext 𝓤 𝓤 → {X : 𝓤 ̇ } → is-subsingleton (is-subsingleton X) being-subsingleton-is-subsingleton fe {X} i j = c where l : is-set X l = subsingletons-are-sets X i a : (x y : X) → i x y ≡ j x y a x y = l x y (i x y) (j x y) b : (x : X) → i x ≡ j x b x = fe (a x) c : i ≡ j c = fe b being-center-is-subsingleton : dfunext 𝓤 𝓤 → {X : 𝓤 ̇ } (c : X) → is-subsingleton (is-center X c) being-center-is-subsingleton fe {X} c φ γ = k where i : is-singleton X i = c , φ j : (x : X) → is-subsingleton (c ≡ x) j x = singletons-are-sets X i c x k : φ ≡ γ k = fe (λ x → j x (φ x) (γ x)) Π-is-set : hfunext 𝓤 𝓥 → {X : 𝓤 ̇ } {A : X → 𝓥 ̇ } → ((x : X) → is-set (A x)) → is-set (Π A) Π-is-set hfe s f g = b where a : is-subsingleton (f ∼ g) a p q = γ where h : ∀ x → p x ≡ q x h x = s x (f x) (g x) (p x) (q x) γ : p ≡ q γ = hfunext-gives-dfunext hfe h e : (f ≡ g) ≃ (f ∼ g) e = (happly f g , hfe f g) b : is-subsingleton (f ≡ g) b = equiv-to-subsingleton e a being-set-is-subsingleton : dfunext 𝓤 𝓤 → {X : 𝓤 ̇ } → is-subsingleton (is-set X) being-set-is-subsingleton fe = Π-is-subsingleton fe (λ x → Π-is-subsingleton fe (λ y → being-subsingleton-is-subsingleton fe)) hlevel-relation-is-subsingleton : dfunext 𝓤 𝓤 → (n : ℕ) (X : 𝓤 ̇ ) → is-subsingleton (X is-of-hlevel n) hlevel-relation-is-subsingleton {𝓤} fe zero X = being-singleton-is-subsingleton fe hlevel-relation-is-subsingleton fe (succ n) X = Π-is-subsingleton fe (λ x → Π-is-subsingleton fe (λ x' → hlevel-relation-is-subsingleton fe n (x ≡ x'))) ●-assoc : dfunext 𝓣 (𝓤 ⊔ 𝓣) → dfunext (𝓤 ⊔ 𝓣) (𝓤 ⊔ 𝓣) → {X : 𝓤 ̇ } {Y : 𝓥 ̇ } {Z : 𝓦 ̇ } {T : 𝓣 ̇ } (α : X ≃ Y) (β : Y ≃ Z) (γ : Z ≃ T) → α ● (β ● γ) ≡ (α ● β) ● γ ●-assoc fe fe' (f , a) (g , b) (h , c) = ap (h ∘ g ∘ f ,_) q where d e : is-equiv (h ∘ g ∘ f) d = ∘-is-equiv (∘-is-equiv c b) a e = ∘-is-equiv c (∘-is-equiv b a) q : d ≡ e q = being-equiv-is-subsingleton fe fe' (h ∘ g ∘ f) _ _ ≃-sym-involutive : dfunext 𝓥 (𝓤 ⊔ 𝓥) → dfunext (𝓤 ⊔ 𝓥) (𝓤 ⊔ 𝓥) → {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (α : X ≃ Y) → ≃-sym (≃-sym α) ≡ α ≃-sym-involutive fe fe' (f , a) = to-subtype-≡ (being-equiv-is-subsingleton fe fe') (inversion-involutive f a) ≃-sym-is-equiv : dfunext 𝓥 (𝓤 ⊔ 𝓥) → dfunext 𝓤 (𝓤 ⊔ 𝓥) → dfunext (𝓤 ⊔ 𝓥) (𝓤 ⊔ 𝓥) → {X : 𝓤 ̇ } {Y : 𝓥 ̇ } → is-equiv (≃-sym {𝓤} {𝓥} {X} {Y}) ≃-sym-is-equiv fe₀ fe₁ fe₂ = invertibles-are-equivs ≃-sym (≃-sym , ≃-sym-involutive fe₀ fe₂ , ≃-sym-involutive fe₁ fe₂) ≃-sym-≃ : dfunext 𝓥 (𝓤 ⊔ 𝓥) → dfunext 𝓤 (𝓤 ⊔ 𝓥) → dfunext (𝓤 ⊔ 𝓥) (𝓤 ⊔ 𝓥) → (X : 𝓤 ̇ ) (Y : 𝓥 ̇ ) → (X ≃ Y) ≃ (Y ≃ X) ≃-sym-≃ fe₀ fe₁ fe₂ X Y = ≃-sym , ≃-sym-is-equiv fe₀ fe₁ fe₂ Π-cong : dfunext 𝓤 𝓥 → dfunext 𝓤 𝓦 → {X : 𝓤 ̇ } {Y : X → 𝓥 ̇ } {Y' : X → 𝓦 ̇ } → ((x : X) → Y x ≃ Y' x) → Π Y ≃ Π Y' Π-cong fe fe' {X} {Y} {Y'} φ = invertibility-gives-≃ F (G , GF , FG) where f : (x : X) → Y x → Y' x f x = ⌜ φ x ⌝ e : (x : X) → is-equiv (f x) e x = ⌜⌝-is-equiv (φ x) g : (x : X) → Y' x → Y x g x = inverse (f x) (e x) fg : (x : X) (y' : Y' x) → f x (g x y') ≡ y' fg x = inverses-are-sections (f x) (e x) gf : (x : X) (y : Y x) → g x (f x y) ≡ y gf x = inverses-are-retractions (f x) (e x) F : ((x : X) → Y x) → ((x : X) → Y' x) F φ x = f x (φ x) G : ((x : X) → Y' x) → (x : X) → Y x G γ x = g x (γ x) FG : (γ : ((x : X) → Y' x)) → F (G γ) ≡ γ FG γ = fe' (λ x → fg x (γ x)) GF : (φ : ((x : X) → Y x)) → G (F φ) ≡ φ GF φ = fe (λ x → gf x (φ x)) hfunext-≃ : hfunext 𝓤 𝓥 → {X : 𝓤 ̇ } {A : X → 𝓥 ̇ } (f g : Π A) → (f ≡ g) ≃ (f ∼ g) hfunext-≃ hfe f g = (happly f g , hfe f g) hfunext₂-≃ : hfunext 𝓤 (𝓥 ⊔ 𝓦) → hfunext 𝓥 𝓦 → {X : 𝓤 ̇ } {Y : X → 𝓥 ̇ } {A : (x : X) → Y x → 𝓦 ̇ } (f g : (x : X) (y : Y x) → A x y) → (f ≡ g) ≃ (∀ x y → f x y ≡ g x y) hfunext₂-≃ fe fe' {X} f g = (f ≡ g) ≃⟨ i ⟩ (∀ x → f x ≡ g x) ≃⟨ ii ⟩ (∀ x y → f x y ≡ g x y) ■ where i = hfunext-≃ fe f g ii = Π-cong (hfunext-gives-dfunext fe) (hfunext-gives-dfunext fe) (λ x → hfunext-≃ fe' (f x) (g x)) precomp-invertible : dfunext 𝓥 𝓦 → dfunext 𝓤 𝓦 → {X : 𝓤 ̇ } {Y : 𝓥 ̇ } {Z : 𝓦 ̇ } (f : X → Y) → invertible f → invertible (λ (h : Y → Z) → h ∘ f) precomp-invertible fe fe' {X} {Y} {Z} f (g , η , ε) = (g' , η' , ε') where f' : (Y → Z) → (X → Z) f' h = h ∘ f g' : (X → Z) → (Y → Z) g' k = k ∘ g η' : (h : Y → Z) → g' (f' h) ≡ h η' h = fe (λ y → ap h (ε y)) ε' : (k : X → Z) → f' (g' k) ≡ k ε' k = fe' (λ x → ap k (η x)) at-most-one-section : dfunext 𝓥 𝓤 → hfunext 𝓥 𝓥 → {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (f : X → Y) → has-retraction f → is-subsingleton (has-section f) at-most-one-section {𝓥} {𝓤} fe hfe {X} {Y} f (g , gf) (h , fh) = d where fe' : dfunext 𝓥 𝓥 fe' = hfunext-gives-dfunext hfe a : invertible f a = joyal-equivs-are-invertible f ((h , fh) , (g , gf)) b : is-singleton (fiber (λ h → f ∘ h) id) b = invertibles-are-equivs (λ h → f ∘ h) (postcomp-invertible fe fe' f a) id r : fiber (λ h → f ∘ h) id → has-section f r (h , p) = (h , happly (f ∘ h) id p) s : has-section f → fiber (λ h → f ∘ h) id s (h , η) = (h , fe' η) rs : (σ : has-section f) → r (s σ) ≡ σ rs (h , η) = to-Σ-≡' q where q : happly (f ∘ h) id (inverse (happly (f ∘ h) id) (hfe (f ∘ h) id) η) ≡ η q = inverses-are-sections (happly (f ∘ h) id) (hfe (f ∘ h) id) η c : is-singleton (has-section f) c = retract-of-singleton (r , s , rs) b d : (σ : has-section f) → h , fh ≡ σ d = singletons-are-subsingletons (has-section f) c (h , fh) at-most-one-retraction : hfunext 𝓤 𝓤 → dfunext 𝓥 𝓤 → {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (f : X → Y) → has-section f → is-subsingleton (has-retraction f) at-most-one-retraction {𝓤} {𝓥} hfe fe' {X} {Y} f (g , fg) (h , hf) = d where fe : dfunext 𝓤 𝓤 fe = hfunext-gives-dfunext hfe a : invertible f a = joyal-equivs-are-invertible f ((g , fg) , (h , hf)) b : is-singleton (fiber (λ h → h ∘ f) id) b = invertibles-are-equivs (λ h → h ∘ f) (precomp-invertible fe' fe f a) id r : fiber (λ h → h ∘ f) id → has-retraction f r (h , p) = (h , happly (h ∘ f) id p) s : has-retraction f → fiber (λ h → h ∘ f) id s (h , η) = (h , fe η) rs : (σ : has-retraction f) → r (s σ) ≡ σ rs (h , η) = to-Σ-≡' q where q : happly (h ∘ f) id (inverse (happly (h ∘ f) id) (hfe (h ∘ f) id) η) ≡ η q = inverses-are-sections (happly (h ∘ f) id) (hfe (h ∘ f) id) η c : is-singleton (has-retraction f) c = retract-of-singleton (r , s , rs) b d : (ρ : has-retraction f) → h , hf ≡ ρ d = singletons-are-subsingletons (has-retraction f) c (h , hf) being-joyal-equiv-is-subsingleton : hfunext 𝓤 𝓤 → hfunext 𝓥 𝓥 → dfunext 𝓥 𝓤 → {X : 𝓤 ̇ } {Y : 𝓥 ̇ } → (f : X → Y) → is-subsingleton (is-joyal-equiv f) being-joyal-equiv-is-subsingleton fe₀ fe₁ fe₂ f = ×-is-subsingleton' (at-most-one-section fe₂ fe₁ f , at-most-one-retraction fe₀ fe₂ f) being-hae-is-subsingleton : dfunext 𝓥 𝓤 → hfunext 𝓥 𝓥 → dfunext 𝓤 (𝓥 ⊔ 𝓤) → {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (f : X → Y) → is-subsingleton (is-hae f) being-hae-is-subsingleton fe₀ fe₁ fe₂ {X} {Y} f = subsingleton-criterion' γ where a = λ g ε x → ((g (f x) , ε (f x)) ≡ (x , refl (f x))) ≃⟨ i g ε x ⟩ (Σ p ꞉ g (f x) ≡ x , transport (λ - → f - ≡ f x) p (ε (f x)) ≡ refl (f x)) ≃⟨ ii g ε x ⟩ (Σ p ꞉ g (f x) ≡ x , ap f p ≡ ε (f x)) ■ where i = λ g ε x → Σ-≡-≃ (g (f x) , ε (f x)) (x , refl (f x)) ii = λ g ε x → Σ-cong (λ p → transport-ap-≃ f p (ε (f x))) b = (Σ (g , ε) ꞉ has-section f , ∀ x → (g (f x) , ε (f x)) ≡ (x , refl (f x))) ≃⟨ i ⟩ (Σ (g , ε) ꞉ has-section f , ∀ x → Σ p ꞉ g (f x) ≡ x , ap f p ≡ ε (f x)) ≃⟨ ii ⟩ (Σ g ꞉ (Y → X) , Σ ε ꞉ f ∘ g ∼ id , ∀ x → Σ p ꞉ g (f x) ≡ x , ap f p ≡ ε (f x)) ≃⟨ iii ⟩ (Σ g ꞉ (Y → X) , Σ ε ꞉ f ∘ g ∼ id , Σ η ꞉ g ∘ f ∼ id , ∀ x → ap f (η x) ≡ ε (f x)) ≃⟨ iv ⟩ is-hae f ■ where i = Σ-cong (λ (g , ε) → Π-cong fe₂ fe₂ (a g ε)) ii = Σ-assoc iii = Σ-cong (λ g → Σ-cong (λ ε → ΠΣ-distr-≃)) iv = Σ-cong (λ g → Σ-flip) γ : is-hae f → is-subsingleton (is-hae f) γ (g₀ , ε₀ , η₀ , τ₀) = i where c : (x : X) → is-set (fiber f (f x)) c x = singletons-are-sets (fiber f (f x)) (haes-are-equivs f (g₀ , ε₀ , η₀ , τ₀) (f x)) d : ((g , ε) : has-section f) → is-subsingleton (∀ x → (g (f x) , ε (f x)) ≡ (x , refl (f x))) d (g , ε) = Π-is-subsingleton fe₂ (λ x → c x (g (f x) , ε (f x)) (x , refl (f x))) e : is-subsingleton (Σ (g , ε) ꞉ has-section f , ∀ x → (g (f x) , ε (f x)) ≡ (x , refl (f x))) e = Σ-is-subsingleton (at-most-one-section fe₀ fe₁ f (g₀ , ε₀)) d i : is-subsingleton (is-hae f) i = equiv-to-subsingleton (≃-sym b) e emptiness-is-subsingleton : dfunext 𝓤 𝓤₀ → (X : 𝓤 ̇ ) → is-subsingleton (is-empty X) emptiness-is-subsingleton fe X f g = fe (λ x → !𝟘 (f x ≡ g x) (f x)) +-is-subsingleton : {P : 𝓤 ̇ } {Q : 𝓥 ̇ } → is-subsingleton P → is-subsingleton Q → (P → Q → 𝟘) → is-subsingleton (P + Q) +-is-subsingleton {𝓤} {𝓥} {P} {Q} i j f = γ where γ : (x y : P + Q) → x ≡ y γ (inl p) (inl p') = ap inl (i p p') γ (inl p) (inr q) = !𝟘 (inl p ≡ inr q) (f p q) γ (inr q) (inl p) = !𝟘 (inr q ≡ inl p) (f p q) γ (inr q) (inr q') = ap inr (j q q') +-is-subsingleton' : dfunext 𝓤 𝓤₀ → {P : 𝓤 ̇ } → is-subsingleton P → is-subsingleton (P + ¬ P) +-is-subsingleton' fe {P} i = +-is-subsingleton i (emptiness-is-subsingleton fe P) (λ p n → n p) EM-is-subsingleton : dfunext (𝓤 ⁺) 𝓤 → dfunext 𝓤 𝓤 → dfunext 𝓤 𝓤₀ → is-subsingleton (EM 𝓤) EM-is-subsingleton fe⁺ fe fe₀ = Π-is-subsingleton fe⁺ (λ P → Π-is-subsingleton fe (λ i → +-is-subsingleton' fe₀ i)) \end{code}