Martin Escardo 1st May 2020.

This is ported from the Midlands Graduate School 2019 lecture notes

 https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/HoTT-UF-Agda.html
 https://github.com/martinescardo/HoTT-UF-Agda-Lecture-Notes

\begin{code}

{-# OPTIONS --without-K --exact-split --safe #-}

module MGS-More-FunExt-Consequences where

open import MGS-HAE public
open import MGS-Subsingleton-Theorems public

being-subsingleton-is-subsingleton : dfunext 𝓤 𝓤
                                     {X : 𝓤 ̇ }
                                    is-subsingleton (is-subsingleton X)

being-subsingleton-is-subsingleton fe {X} i j = c
 where
  l : is-set X
  l = subsingletons-are-sets X i

  a : (x y : X)  i x y  j x y
  a x y = l x y (i x y) (j x y)

  b : (x : X)  i x  j x
  b x = fe (a x)

  c : i  j
  c = fe b

being-center-is-subsingleton : dfunext 𝓤 𝓤
                              {X : 𝓤 ̇ } (c : X)
                              is-subsingleton (is-center X c)

being-center-is-subsingleton fe {X} c φ γ = k
 where
  i : is-singleton X
  i = c , φ

  j : (x : X)  is-subsingleton (c  x)
  j x = singletons-are-sets X i c x

  k : φ  γ
  k = fe  x  j x (φ x) (γ x))

Π-is-set : hfunext 𝓤 𝓥
          {X : 𝓤 ̇ } {A : X  𝓥 ̇ }
          ((x : X)  is-set (A x))  is-set (Π A)

Π-is-set hfe s f g = b
 where
  a : is-subsingleton (f  g)
  a p q = γ
   where
    h :  x   p x  q x
    h x = s x (f x) (g x) (p x) (q x)
    γ : p   q
    γ = hfunext-gives-dfunext hfe h

  e : (f  g)  (f  g)
  e = (happly f g , hfe f g)

  b : is-subsingleton (f  g)
  b = equiv-to-subsingleton e a

being-set-is-subsingleton : dfunext 𝓤 𝓤
                           {X : 𝓤 ̇ }
                           is-subsingleton (is-set X)

being-set-is-subsingleton fe = Π-is-subsingleton fe
                                 x  Π-is-subsingleton fe
                                 y  being-subsingleton-is-subsingleton fe))

hlevel-relation-is-subsingleton : dfunext 𝓤 𝓤
                                 (n : ) (X : 𝓤 ̇ )
                                 is-subsingleton (X is-of-hlevel n)

hlevel-relation-is-subsingleton {𝓤} fe zero X =
 being-singleton-is-subsingleton fe

hlevel-relation-is-subsingleton fe (succ n) X =
 Π-is-subsingleton fe
   x  Π-is-subsingleton fe
   x'  hlevel-relation-is-subsingleton fe n (x  x')))

●-assoc : dfunext 𝓣 (𝓤  𝓣)  dfunext (𝓤  𝓣) (𝓤  𝓣)
         {X : 𝓤 ̇ } {Y : 𝓥 ̇ } {Z : 𝓦 ̇ } {T : 𝓣 ̇ }
          (α : X  Y) (β : Y  Z) (γ : Z  T)
         α  (β  γ)  (α  β)  γ

●-assoc fe fe' (f , a) (g , b) (h , c) = ap (h  g  f ,_) q
 where
  d e : is-equiv (h  g  f)
  d = ∘-is-equiv (∘-is-equiv c b) a
  e = ∘-is-equiv c (∘-is-equiv b a)

  q : d  e
  q = being-equiv-is-subsingleton fe fe' (h  g  f) _ _

≃-sym-involutive : dfunext 𝓥 (𝓤  𝓥)  dfunext (𝓤  𝓥) (𝓤  𝓥) 
                   {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (α : X  Y)
                  ≃-sym (≃-sym α)  α

≃-sym-involutive fe fe' (f , a) = to-subtype-≡
                                   (being-equiv-is-subsingleton fe fe')
                                   (inversion-involutive f a)

≃-sym-is-equiv : dfunext 𝓥 (𝓤  𝓥)  dfunext 𝓤 (𝓤  𝓥)  dfunext (𝓤  𝓥) (𝓤  𝓥)
                {X : 𝓤 ̇ } {Y : 𝓥 ̇ }
                is-equiv (≃-sym {𝓤} {𝓥} {X} {Y})

≃-sym-is-equiv fe₀ fe₁ fe₂ = invertibles-are-equivs ≃-sym
                              (≃-sym ,
                               ≃-sym-involutive fe₀ fe₂ ,
                               ≃-sym-involutive fe₁ fe₂)

≃-sym-≃ : dfunext 𝓥 (𝓤  𝓥)  dfunext 𝓤 (𝓤  𝓥)  dfunext (𝓤  𝓥) (𝓤  𝓥)
         (X : 𝓤 ̇ ) (Y : 𝓥 ̇ )
         (X  Y)  (Y  X)

≃-sym-≃ fe₀ fe₁ fe₂ X Y = ≃-sym , ≃-sym-is-equiv fe₀ fe₁ fe₂

Π-cong : dfunext 𝓤 𝓥  dfunext 𝓤 𝓦
        {X : 𝓤 ̇ } {Y : X  𝓥 ̇ } {Y' : X  𝓦 ̇ }
        ((x : X)  Y x  Y' x)  Π Y  Π Y'

Π-cong fe fe' {X} {Y} {Y'} φ = invertibility-gives-≃ F (G , GF , FG)
 where
  f : (x : X)  Y x  Y' x
  f x =  φ x 

  e : (x : X)  is-equiv (f x)
  e x = ⌜⌝-is-equiv (φ x)

  g : (x : X)  Y' x  Y x
  g x = inverse (f x) (e x)

  fg : (x : X) (y' : Y' x)  f x (g x y')  y'
  fg x = inverses-are-sections (f x) (e x)

  gf : (x : X) (y : Y x)  g x (f x y)  y
  gf x = inverses-are-retractions (f x) (e x)

  F : ((x : X)  Y x)  ((x : X)  Y' x)
  F φ x = f x (φ x)

  G : ((x : X)  Y' x)  (x : X)  Y x
  G γ x = g x (γ x)

  FG : (γ : ((x : X)  Y' x))  F (G γ)  γ
  FG γ = fe'  x  fg x (γ x))

  GF : (φ : ((x : X)  Y x))  G (F φ)  φ
  GF φ = fe  x  gf x (φ x))

hfunext-≃ : hfunext 𝓤 𝓥
           {X : 𝓤 ̇ } {A : X  𝓥 ̇ } (f g : Π A)
           (f  g)  (f  g)

hfunext-≃ hfe f g = (happly f g , hfe f g)

hfunext₂-≃ : hfunext 𝓤 (𝓥  𝓦)  hfunext 𝓥 𝓦
            {X : 𝓤 ̇ } {Y : X  𝓥 ̇ } {A : (x : X)  Y x  𝓦 ̇ }
             (f g : (x : X) (y : Y x)  A x y)
            (f  g)  (∀ x y  f x y  g x y)

hfunext₂-≃ fe fe' {X} f g =

 (f  g)                  ≃⟨ i 
 (∀ x  f x  g x)        ≃⟨ ii 
 (∀ x y  f x y  g x y)  

 where
  i  = hfunext-≃ fe f g
  ii = Π-cong
        (hfunext-gives-dfunext fe)
        (hfunext-gives-dfunext fe)
         x  hfunext-≃ fe' (f x) (g x))

precomp-invertible : dfunext 𝓥 𝓦  dfunext 𝓤 𝓦
                    {X : 𝓤 ̇ } {Y : 𝓥 ̇ } {Z : 𝓦 ̇ } (f : X  Y)
                    invertible f
                    invertible  (h : Y  Z)  h  f)

precomp-invertible fe fe' {X} {Y} {Z} f (g , η , ε) = (g' , η' , ε')
 where
  f' : (Y  Z)  (X  Z)
  f' h = h  f

  g' : (X  Z)  (Y  Z)
  g' k = k  g

  η' : (h : Y  Z)  g' (f' h)  h
  η' h = fe  y  ap h (ε y))

  ε' : (k : X  Z)  f' (g' k)  k
  ε' k = fe'  x  ap k (η x))

at-most-one-section : dfunext 𝓥 𝓤  hfunext 𝓥 𝓥
                     {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (f : X  Y)
                     has-retraction f
                     is-subsingleton (has-section f)

at-most-one-section {𝓥} {𝓤} fe hfe {X} {Y} f (g , gf) (h , fh) = d
 where
  fe' : dfunext 𝓥 𝓥
  fe' = hfunext-gives-dfunext hfe

  a : invertible f
  a = joyal-equivs-are-invertible f ((h , fh) , (g , gf))

  b : is-singleton (fiber  h   f  h) id)
  b = invertibles-are-equivs  h  f  h) (postcomp-invertible fe fe' f a) id

  r : fiber  h   f  h) id  has-section f
  r (h , p) = (h , happly (f  h) id p)

  s : has-section f  fiber  h  f  h) id
  s (h , η) = (h , fe' η)

  rs : (σ : has-section f)  r (s σ)  σ
  rs (h , η) = to-Σ-≡' q
   where
    q : happly (f  h) id (inverse (happly (f  h) id) (hfe (f  h) id) η)  η
    q = inverses-are-sections (happly (f  h) id) (hfe (f  h) id) η

  c : is-singleton (has-section f)
  c = retract-of-singleton (r , s , rs) b

  d : (σ : has-section f)  h , fh  σ
  d = singletons-are-subsingletons (has-section f) c (h , fh)

at-most-one-retraction : hfunext 𝓤 𝓤  dfunext 𝓥 𝓤
                        {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (f : X  Y)
                        has-section f
                        is-subsingleton (has-retraction f)

at-most-one-retraction {𝓤} {𝓥} hfe fe' {X} {Y} f (g , fg) (h , hf) = d
 where
  fe : dfunext 𝓤 𝓤
  fe = hfunext-gives-dfunext hfe

  a : invertible f
  a = joyal-equivs-are-invertible f ((g , fg) , (h , hf))

  b : is-singleton (fiber  h   h  f) id)
  b = invertibles-are-equivs  h  h  f) (precomp-invertible fe' fe f a) id

  r : fiber  h   h  f) id  has-retraction f
  r (h , p) = (h , happly (h  f) id p)

  s : has-retraction f  fiber  h   h  f) id
  s (h , η) = (h , fe η)

  rs : (σ : has-retraction f)  r (s σ)  σ
  rs (h , η) = to-Σ-≡' q
   where
    q : happly (h  f) id (inverse (happly (h  f) id) (hfe (h  f) id) η)  η
    q = inverses-are-sections (happly (h  f) id) (hfe (h  f) id) η

  c : is-singleton (has-retraction f)
  c = retract-of-singleton (r , s , rs) b

  d : (ρ : has-retraction f)  h , hf  ρ
  d = singletons-are-subsingletons (has-retraction f) c (h , hf)

being-joyal-equiv-is-subsingleton : hfunext 𝓤 𝓤  hfunext 𝓥 𝓥  dfunext 𝓥 𝓤
                                   {X : 𝓤 ̇ } {Y : 𝓥 ̇ }
                                   (f : X  Y)
                                   is-subsingleton (is-joyal-equiv f)

being-joyal-equiv-is-subsingleton fe₀ fe₁ fe₂ f = ×-is-subsingleton'
                                                   (at-most-one-section    fe₂ fe₁ f ,
                                                    at-most-one-retraction fe₀ fe₂ f)

being-hae-is-subsingleton : dfunext 𝓥 𝓤  hfunext 𝓥 𝓥  dfunext 𝓤 (𝓥  𝓤)
                           {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (f : X  Y)
                           is-subsingleton (is-hae f)

being-hae-is-subsingleton fe₀ fe₁ fe₂ {X} {Y} f = subsingleton-criterion' γ
 where
  a = λ g ε x
     ((g (f x) , ε (f x))  (x , refl (f x)))                                   ≃⟨ i  g ε x 
      (Σ p  g (f x)  x , transport  -  f -  f x) p (ε (f x))  refl (f x)) ≃⟨ ii g ε x 
      (Σ p  g (f x)  x , ap f p  ε (f x))                                     
   where
    i  = λ g ε x  Σ-≡-≃ (g (f x) , ε (f x)) (x , refl (f x))
    ii = λ g ε x  Σ-cong  p  transport-ap-≃ f p (ε (f x)))

  b = (Σ (g , ε)  has-section f ,  x  (g (f x) , ε (f x))  (x , refl (f x)))         ≃⟨ i 
      (Σ (g , ε)  has-section f ,  x  Σ  p  g (f x)  x , ap f p  ε (f x))          ≃⟨ ii 
      (Σ g  (Y  X) , Σ ε  f  g  id ,  x  Σ  p  g (f x)  x , ap f p  ε (f x))   ≃⟨ iii 
      (Σ g  (Y  X) , Σ ε  f  g  id , Σ η  g  f  id ,  x  ap f (η x)  ε (f x)) ≃⟨ iv 
      is-hae f                                                                           
   where
    i   = Σ-cong  (g , ε)  Π-cong fe₂ fe₂ (a g ε))
    ii  = Σ-assoc
    iii = Σ-cong  g  Σ-cong  ε  ΠΣ-distr-≃))
    iv  = Σ-cong  g  Σ-flip)

  γ : is-hae f  is-subsingleton (is-hae f)
  γ (g₀ , ε₀ , η₀ , τ₀) = i
   where
    c : (x : X)  is-set (fiber f (f x))
    c x = singletons-are-sets (fiber f (f x)) (haes-are-equivs f (g₀ , ε₀ , η₀ , τ₀) (f x))

    d : ((g , ε) : has-section f)  is-subsingleton (∀ x  (g (f x) , ε (f x))  (x , refl (f x)))
    d (g , ε) = Π-is-subsingleton fe₂  x  c x (g (f x) , ε (f x)) (x , refl (f x)))

    e : is-subsingleton (Σ (g , ε)  has-section f ,  x  (g (f x) , ε (f x))  (x , refl (f x)))
    e = Σ-is-subsingleton (at-most-one-section fe₀ fe₁ f (g₀ , ε₀)) d

    i : is-subsingleton (is-hae f)
    i = equiv-to-subsingleton (≃-sym b) e

emptiness-is-subsingleton : dfunext 𝓤 𝓤₀  (X : 𝓤 ̇ )
                           is-subsingleton (is-empty X)

emptiness-is-subsingleton fe X f g = fe  x  !𝟘 (f x  g x) (f x))

+-is-subsingleton : {P : 𝓤 ̇ } {Q : 𝓥 ̇ }
                   is-subsingleton P
                   is-subsingleton Q
                   (P  Q  𝟘)  is-subsingleton (P + Q)

+-is-subsingleton {𝓤} {𝓥} {P} {Q} i j f = γ
 where
  γ : (x y : P + Q)  x  y
  γ (inl p) (inl p') = ap inl (i p p')
  γ (inl p) (inr q)  = !𝟘 (inl p  inr q) (f p q)
  γ (inr q) (inl p)  = !𝟘 (inr q  inl p) (f p q)
  γ (inr q) (inr q') = ap inr (j q q')

+-is-subsingleton' : dfunext 𝓤 𝓤₀
                    {P : 𝓤 ̇ }  is-subsingleton P  is-subsingleton (P + ¬ P)

+-is-subsingleton' fe {P} i = +-is-subsingleton i
                               (emptiness-is-subsingleton fe P)
                                p n  n p)

EM-is-subsingleton : dfunext (𝓤 ) 𝓤  dfunext 𝓤 𝓤  dfunext 𝓤 𝓤₀
                    is-subsingleton (EM 𝓤)

EM-is-subsingleton fe⁺ fe fe₀ = Π-is-subsingleton fe⁺
                                  P  Π-is-subsingleton fe
                                          i  +-is-subsingleton' fe₀ i))
\end{code}