Martin Escardo 1st May 2020. This is ported from the Midlands Graduate School 2019 lecture notes https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/HoTT-UF-Agda.html https://github.com/martinescardo/HoTT-UF-Agda-Lecture-Notes \begin{code} {-# OPTIONS --without-K --exact-split --safe #-} module MGS-Subsingleton-Theorems where open import MGS-FunExt-from-Univalence public Ξ -is-subsingleton : dfunext π€ π₯ β {X : π€ Μ } {A : X β π₯ Μ } β ((x : X) β is-subsingleton (A x)) β is-subsingleton (Ξ A) Ξ -is-subsingleton fe i f g = fe (Ξ» x β i x (f x) (g x)) being-singleton-is-subsingleton : dfunext π€ π€ β {X : π€ Μ } β is-subsingleton (is-singleton X) being-singleton-is-subsingleton fe {X} (x , Ο) (y , Ξ³) = p where i : is-subsingleton X i = singletons-are-subsingletons X (y , Ξ³) s : is-set X s = subsingletons-are-sets X i a : (z : X) β is-subsingleton ((t : X) β z β‘ t) a z = Ξ -is-subsingleton fe (s z) b : x β‘ y b = Ο y p : (x , Ο) β‘ (y , Ξ³) p = to-subtype-β‘ a b being-equiv-is-subsingleton : dfunext π₯ (π€ β π₯) β dfunext (π€ β π₯) (π€ β π₯) β {X : π€ Μ } {Y : π₯ Μ } (f : X β Y) β is-subsingleton (is-equiv f) being-equiv-is-subsingleton fe fe' f = Ξ -is-subsingleton fe (Ξ» x β being-singleton-is-subsingleton fe') subsingletons-are-retracts-of-logically-equivalent-types : {X : π€ Μ } {Y : π₯ Μ } β is-subsingleton X β (X β Y) β X β Y subsingletons-are-retracts-of-logically-equivalent-types i (f , g) = g , f , Ξ· where Ξ· : g β f βΌ id Ξ· x = i (g (f x)) x equivalence-property-is-retract-of-invertibility-data : dfunext π₯ (π€ β π₯) β dfunext (π€ β π₯) (π€ β π₯) β {X : π€ Μ } {Y : π₯ Μ } (f : X β Y) β is-equiv f β invertible f equivalence-property-is-retract-of-invertibility-data fe fe' f = subsingletons-are-retracts-of-logically-equivalent-types (being-equiv-is-subsingleton fe fe' f) (equivs-are-invertible f , invertibles-are-equivs f) univalence-is-subsingleton : is-univalent (π€ βΊ) β is-subsingleton (is-univalent π€) univalence-is-subsingleton {π€} uaβΊ = subsingleton-criterion' Ξ³ where Ξ³ : is-univalent π€ β is-subsingleton (is-univalent π€) Ξ³ ua = i where dfeβ : dfunext π€ (π€ βΊ) dfeβ : dfunext (π€ βΊ) (π€ βΊ) dfeβ = univalence-gives-dfunext' ua uaβΊ dfeβ = univalence-gives-dfunext uaβΊ i : is-subsingleton (is-univalent π€) i = Ξ -is-subsingleton dfeβ (Ξ» X β Ξ -is-subsingleton dfeβ (Ξ» Y β being-equiv-is-subsingleton dfeβ dfeβ (IdβEq X Y))) Univalence : π€Ο Univalence = β π€ β is-univalent π€ univalence-is-subsingletonΟ : Univalence β is-subsingleton (is-univalent π€) univalence-is-subsingletonΟ {π€} Ξ³ = univalence-is-subsingleton (Ξ³ (π€ βΊ)) univalence-is-a-singleton : Univalence β is-singleton (is-univalent π€) univalence-is-a-singleton {π€} Ξ³ = pointed-subsingletons-are-singletons (is-univalent π€) (Ξ³ π€) (univalence-is-subsingletonΟ Ξ³) global-dfunext : π€Ο global-dfunext = β {π€ π₯} β dfunext π€ π₯ univalence-gives-global-dfunext : Univalence β global-dfunext univalence-gives-global-dfunext ua {π€} {π₯} = univalence-gives-dfunext' (ua π€) (ua (π€ β π₯)) global-hfunext : π€Ο global-hfunext = β {π€ π₯} β hfunext π€ π₯ univalence-gives-global-hfunext : Univalence β global-hfunext univalence-gives-global-hfunext ua {π€} {π₯} = univalence-gives-hfunext' (ua π€) (ua (π€ β π₯)) Ξ -is-subsingleton' : dfunext π€ π₯ β {X : π€ Μ } {A : X β π₯ Μ } β ((x : X) β is-subsingleton (A x)) β is-subsingleton ({x : X} β A x) Ξ -is-subsingleton' fe {X} {A} i = Ξ³ where Ο : ({x : X} β A x) β Ξ A Ο = (Ξ» f {x} β f x) , (Ξ» g x β g {x}) , (Ξ» f β refl (Ξ» {x} β f)) Ξ³ : is-subsingleton ({x : X} β A x) Ξ³ = retract-of-subsingleton Ο (Ξ -is-subsingleton fe i) vv-and-hfunext-are-subsingletons-lemma : dfunext (π€ βΊ) (π€ β (π₯ βΊ)) β dfunext (π€ β (π₯ βΊ)) (π€ β π₯) β dfunext (π€ β π₯) (π€ β π₯) β is-subsingleton (vvfunext π€ π₯) Γ is-subsingleton (hfunext π€ π₯) vv-and-hfunext-are-subsingletons-lemma {π€} {π₯} dfe dfe' dfe'' = Ο , Ξ³ where Ο : is-subsingleton (vvfunext π€ π₯) Ο = Ξ -is-subsingleton' dfe (Ξ» X β Ξ -is-subsingleton' dfe' (Ξ» A β Ξ -is-subsingleton dfe'' (Ξ» i β being-singleton-is-subsingleton dfe''))) Ξ³ : is-subsingleton (hfunext π€ π₯) Ξ³ = Ξ -is-subsingleton' dfe (Ξ» X β Ξ -is-subsingleton' dfe' (Ξ» A β Ξ -is-subsingleton dfe'' (Ξ» f β Ξ -is-subsingleton dfe'' (Ξ» g β being-equiv-is-subsingleton dfe'' dfe'' (happly f g))))) vv-and-hfunext-are-singletons : Univalence β is-singleton (vvfunext π€ π₯) Γ is-singleton (hfunext π€ π₯) vv-and-hfunext-are-singletons {π€} {π₯} ua = f (vv-and-hfunext-are-subsingletons-lemma (univalence-gives-dfunext' (ua (π€ βΊ)) (ua ((π€ βΊ) β (π₯ βΊ)))) (univalence-gives-dfunext' (ua (π€ β (π₯ βΊ))) (ua (π€ β (π₯ βΊ)))) (univalence-gives-dfunext' (ua (π€ β π₯)) (ua (π€ β π₯)))) where f : is-subsingleton (vvfunext π€ π₯) Γ is-subsingleton (hfunext π€ π₯) β is-singleton (vvfunext π€ π₯) Γ is-singleton (hfunext π€ π₯) f (i , j) = pointed-subsingletons-are-singletons (vvfunext π€ π₯) (univalence-gives-vvfunext' (ua π€) (ua (π€ β π₯))) i , pointed-subsingletons-are-singletons (hfunext π€ π₯) (univalence-gives-hfunext' (ua π€) (ua (π€ β π₯))) j \end{code}