Martin Escardo 1st May 2020.

This is ported from the Midlands Graduate School 2019 lecture notes

 https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/HoTT-UF-Agda.html
 https://github.com/martinescardo/HoTT-UF-Agda-Lecture-Notes

\begin{code}

{-# OPTIONS --without-K --exact-split --safe #-}

module MGS-HAE where

open import MGS-Equivalence-Induction public

is-hae : {X : 𝓤 ̇ } {Y : 𝓥 ̇ }  (X  Y)  𝓤  𝓥 ̇
is-hae f = Σ g  (codomain f  domain f)
         , Σ η  g  f  id
         , Σ ε  f  g  id
         , ((x : domain f)  ap f (η x)  ε (f x))

haes-are-invertible : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (f : X  Y)
                     is-hae f  invertible f

haes-are-invertible f (g , η , ε , τ) = g , η , ε

transport-ap-≃ : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (f : X  Y)
                 {x x' : X} (a : x'  x) (b : f x'  f x)
                (transport  -  f -  f x) a b  refl (f x))  (ap f a  b)

transport-ap-≃ f (refl x) b = γ
 where
  γ : (b  refl (f x))  (refl (f x)  b)
  γ = ⁻¹-≃ b (refl (f x))

haes-are-equivs : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (f : X  Y)
                 is-hae f  is-equiv f

haes-are-equivs f (g , η , ε , τ) y = γ
 where
  c : (φ : fiber f y)  (g y , ε y)  φ
  c (x , refl .(f x)) = q
   where
    p : transport  -  f -  f x) (η x) (ε (f x))  refl (f x)
    p =  ≃-sym (transport-ap-≃ f (η x) (ε (f x)))  (τ x)

    q : (g (f x) , ε (f x))  (x , refl (f x))
    q = to-Σ-≡ (η x , p)

  γ : is-singleton (fiber f y)
  γ = (g y , ε y) , c

id-is-hae : (X : 𝓤 ̇ )  is-hae (𝑖𝑑 X)
id-is-hae X = 𝑖𝑑 X , refl , refl ,  x  refl (refl x))

ua-equivs-are-haes : is-univalent 𝓤
                    {X Y : 𝓤 ̇ } (f : X  Y)
                    is-equiv f  is-hae f

ua-equivs-are-haes ua {X} {Y} = 𝕁-equiv ua  X Y f  is-hae f) id-is-hae X Y

equivs-are-haes : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (f : X  Y)
                 is-equiv f  is-hae f

equivs-are-haes {𝓤} {𝓥} {X} {Y} f i = (g , η , ε , τ)
 where
  g : Y  X
  g = inverse f i

  η : g  f  id
  η = inverses-are-retractions f i

  ε : f  g  id
  ε = inverses-are-sections f i

  τ : (x : X)  ap f (η x)  ε (f x)
  τ x = γ
   where
    φ : fiber f (f x)
    φ = center (fiber f (f x)) (i (f x))

    by-definition-of-g : g (f x)  fiber-point φ
    by-definition-of-g = refl _

    p : φ  (x , refl (f x))
    p = centrality (fiber f (f x)) (i (f x)) (x , refl (f x))

    a : g (f x)  x
    a = ap fiber-point p

    b : f (g (f x))  f x
    b = fiber-identification φ

    by-definition-of-η : η x  a
    by-definition-of-η = refl _

    by-definition-of-ε : ε (f x)  b
    by-definition-of-ε = refl _

    q = transport  -  f -  f x)       a          b         ≡⟨ refl _ 
        transport  -  f -  f x)       (ap pr₁ p) (pr₂ φ)   ≡⟨ t 
        transport  -  f (pr₁ -)  f x) p          (pr₂ φ)   ≡⟨ apd pr₂ p 
        refl (f x)                                             
     where
      t = (transport-ap  -  f -  f x) pr₁ p b)⁻¹

    γ : ap f (η x)  ε (f x)
    γ =  transport-ap-≃ f a b  q

equivs-are-haes' : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (f : X  Y)
                  is-equiv f  is-hae f

equivs-are-haes' f e = (inverse f e ,
                        inverses-are-retractions f e ,
                        inverses-are-sections f e ,
                        τ)
 where
  τ :  x  ap f (inverses-are-retractions f e x)  inverses-are-sections f e (f x)
  τ x =  transport-ap-≃ f (ap pr₁ p) (pr₂ φ)  q
   where
    φ : fiber f (f x)
    φ = pr₁ (e (f x))

    p : φ  (x , refl (f x))
    p = pr₂ (e (f x)) (x , refl (f x))

    q : transport  -  f -  f x) (ap pr₁ p) (pr₂ φ)  refl (f x)
    q = (transport-ap  -  f -  f x) pr₁ p ((pr₂ φ)))⁻¹  apd pr₂ p

equiv-invertible-hae-factorization : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (f : X  Y)
                                    equivs-are-invertible f
                                    haes-are-invertible f  equivs-are-haes f

equiv-invertible-hae-factorization f e = refl (equivs-are-invertible f e)

half-adjoint-condition : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (f : X  Y) (e : is-equiv f) (x : X)
                        ap f (inverses-are-retractions f e x)  inverses-are-sections f e (f x)

half-adjoint-condition f e = pr₂ (pr₂ (pr₂ (equivs-are-haes f e)))

Σ-change-of-variable : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (A : Y  𝓦 ̇ ) (f : X  Y)
                      is-equiv f  (Σ y  Y , A y)  (Σ x  X , A (f x))

Σ-change-of-variable {𝓤} {𝓥} {𝓦} {X} {Y} A f i = γ
 where
  g = inverse f i
  η = inverses-are-retractions f i
  ε = inverses-are-sections f i
  τ = half-adjoint-condition f i

  φ : Σ A  Σ (A  f)
  φ (y , a) = (g y , transport A ((ε y)⁻¹) a)

  ψ : Σ (A  f)  Σ A
  ψ (x , a) = (f x , a)

  ψφ : (z : Σ A)  ψ (φ z)  z
  ψφ (y , a) = p
   where
    p : (f (g y) , transport A ((ε y)⁻¹) a)  (y , a)
    p = to-Σ-≡ (ε y , transport-is-retraction A (ε y) a)

  φψ : (t : Σ (A  f))  φ (ψ t)  t
  φψ (x , a) = p
   where
    a' : A (f (g (f x)))
    a' = transport A ((ε (f x))⁻¹) a

    q = transport (A  f) (η x)  a' ≡⟨ transport-ap A f (η x) a' 
        transport A (ap f (η x)) a' ≡⟨ ap  -  transport A - a') (τ x) 
        transport A (ε (f x))    a' ≡⟨ transport-is-retraction A (ε (f x)) a 
        a                          

    p : (g (f x) , transport A ((ε (f x))⁻¹) a)  (x , a)
    p = to-Σ-≡ (η x , q)

  γ : Σ A  Σ (A  f)
  γ = invertibility-gives-≃ φ (ψ , ψφ , φψ)

~-naturality : {X : 𝓤 ̇ } {A : 𝓥 ̇ }
               (f g : X  A) (H : f  g) {x y : X} {p : x  y}
              H x  ap g p  ap f p  H y

~-naturality f g H {x} {_} {refl a} = refl-left ⁻¹

~-naturality' : {X : 𝓤 ̇ } {A : 𝓥 ̇ }
                (f g : X  A) (H : f  g) {x y : X} {p : x  y}
               H x  ap g p  (H y)⁻¹  ap f p

~-naturality' f g H {x} {x} {refl x} = ⁻¹-right∙ (H x)

~-id-naturality : {X : 𝓤 ̇ }
                  (h : X  X) (η : h  id) {x : X}
                 η (h x)  ap h (η x)

~-id-naturality h η {x} =

   η (h x)                         ≡⟨ refl _ 
   η (h x)  refl (h x)            ≡⟨ i 
   η (h x)  (η x  (η x)⁻¹)       ≡⟨ ii 
   η (h x)  η x  (η x)⁻¹         ≡⟨ iii 
   η (h x)  ap id (η x)  (η x)⁻¹ ≡⟨ iv 
   ap h (η x)                      

 where
  i   = ap (η(h x) ∙_) ((⁻¹-right∙ (η x))⁻¹)
  ii  = (∙assoc (η (h x)) (η x) (η x ⁻¹))⁻¹
  iii = ap  -  η (h x)  -  η x ⁻¹) ((ap-id (η x))⁻¹)
  iv  = ~-naturality' h id η {h x} {x} {η x}

invertibles-are-haes : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (f : X  Y)
                      invertible f  is-hae f

invertibles-are-haes f (g , η , ε) = g , η , ε' , τ
 where
  ε' = λ y  f (g y)         ≡⟨ (ε (f (g y)))⁻¹ 
             f (g (f (g y))) ≡⟨ ap f (η (g y)) 
             f (g y)         ≡⟨ ε y 
             y               

  module _ (x : domain f) where

   p = η (g (f x))       ≡⟨ ~-id-naturality (g  f) η 
       ap (g  f) (η x)  ≡⟨ ap-∘ f g (η x) 
       ap g (ap f (η x)) 

   q = ap f (η (g (f x)))  ε (f x)          ≡⟨ by-p 
       ap f (ap g (ap f (η x)))  ε (f x)    ≡⟨ by-ap-∘ 
       ap (f  g) (ap f (η x))   ε (f x)    ≡⟨ by-~-naturality 
       ε (f (g (f x)))  ap id (ap f (η x))  ≡⟨ by-ap-id 
       ε (f (g (f x)))  ap f (η x)          
    where
     by-p            = ap  -  ap f -  ε (f x)) p
     by-ap-∘         = ap (_∙ ε (f x)) ((ap-∘ g f (ap f (η x)))⁻¹)
     by-~-naturality = (~-naturality (f  g) id ε {f (g (f x))} {f x} {ap f (η x)})⁻¹
     by-ap-id        = ap (ε (f (g (f x))) ∙_) (ap-id (ap f (η x)))

   τ = ap f (η x)                                           ≡⟨ refl-left ⁻¹ 
       refl (f (g (f x)))                      ap f (η x)  ≡⟨ by-⁻¹-left∙ 
       (ε (f (g (f x))))⁻¹   ε (f (g (f x)))  ap f (η x)  ≡⟨ by-∙assoc 
       (ε (f (g (f x))))⁻¹  (ε (f (g (f x)))  ap f (η x)) ≡⟨ by-q 
       (ε (f (g (f x))))⁻¹  (ap f (η (g (f x)))  ε (f x)) ≡⟨ refl _ 
       ε' (f x)                                             
    where
     by-⁻¹-left∙ = ap (_∙ ap f (η x)) ((⁻¹-left∙ (ε (f (g (f x)))))⁻¹)
     by-∙assoc   = ∙assoc ((ε (f (g (f x))))⁻¹) (ε (f (g (f x)))) (ap f (η x))
     by-q        = ap ((ε (f (g (f x))))⁻¹ ∙_) (q ⁻¹)

\end{code}