Martin Escardo.
Excluded middle related things. Notice that this file doesn't
postulate excluded middle. It only defines what the principle of
excluded middle is.
In the Curry-Howard interpretation, excluded middle say that every
type has an inhabitant or os empty. In univalent foundations, where
one works with propositions as subsingletons, excluded middle is the
principle that every subsingleton type is inhabited or empty.
\begin{code}
{-# OPTIONS --without-K --exact-split --safe #-}
module UF-ExcludedMiddle where
open import SpartanMLTT
open import UF-Base
open import UF-Subsingletons
open import UF-Subsingletons-FunExt
open import UF-Equiv
open import UF-Embeddings
open import UF-PropTrunc
open import UF-FunExt
open import UF-UniverseEmbedding
\end{code}
Excluded middle (EM) is not provable or disprovable. However, we do
have that there is no truth value other than false (⊥) or true (⊤),
which we refer to as the density of the decidable truth values.
\begin{code}
EM : ∀ 𝓤 → 𝓤 ⁺ ̇
EM 𝓤 = (P : 𝓤 ̇ ) → is-prop P → P + ¬ P
excluded-middle = EM
lower-EM : ∀ 𝓥 → EM (𝓤 ⊔ 𝓥) → EM 𝓤
lower-EM 𝓥 em P P-is-prop = f d
where
d : Lift 𝓥 P + ¬ Lift 𝓥 P
d = em (Lift 𝓥 P) (equiv-to-prop (Lift-is-universe-embedding 𝓥 P) P-is-prop)
f : Lift 𝓥 P + ¬ Lift 𝓥 P → P + ¬ P
f (inl p) = inl (lower p)
f (inr ν) = inr (λ p → ν (lift 𝓥 p))
Excluded-Middle : 𝓤ω
Excluded-Middle = ∀ {𝓤} → EM 𝓤
EM-is-prop : FunExt → is-prop (EM 𝓤)
EM-is-prop {𝓤} fe = Π₂-is-prop (λ {𝓤} {𝓥} → fe 𝓤 𝓥)
(λ _ → decidability-of-prop-is-prop (fe 𝓤 𝓤₀))
LEM : ∀ 𝓤 → 𝓤 ⁺ ̇
LEM 𝓤 = (p : Ω 𝓤) → p holds + ¬ (p holds)
EM-gives-LEM : EM 𝓤 → LEM 𝓤
EM-gives-LEM em p = em (p holds) (holds-is-prop p)
LEM-gives-LEM : LEM 𝓤 → EM 𝓤
LEM-gives-LEM lem P i = lem (P , i)
WEM : ∀ 𝓤 → 𝓤 ⁺ ̇
WEM 𝓤 = (P : 𝓤 ̇ ) → is-prop P → ¬ P + ¬¬ P
DNE : ∀ 𝓤 → 𝓤 ⁺ ̇
DNE 𝓤 = (P : 𝓤 ̇ ) → is-prop P → ¬¬ P → P
EM-gives-DNE : EM 𝓤 → DNE 𝓤
EM-gives-DNE em P isp φ = cases (λ p → p) (λ u → 𝟘-elim (φ u)) (em P isp)
double-negation-elim : EM 𝓤 → DNE 𝓤
double-negation-elim = EM-gives-DNE
DNE-gives-EM : funext 𝓤 𝓤₀ → DNE 𝓤 → EM 𝓤
DNE-gives-EM fe dne P isp = dne (P + ¬ P)
(decidability-of-prop-is-prop fe isp)
(λ u → u (inr (λ p → u (inl p))))
de-Morgan : EM 𝓤
→ EM 𝓥
→ {A : 𝓤 ̇ } {B : 𝓥 ̇ }
→ is-prop A
→ is-prop B
→ ¬ (A × B) → ¬ A + ¬ B
de-Morgan em em' {A} {B} i j n = Cases (em A i)
(λ a → Cases (em' B j)
(λ b → 𝟘-elim (n (a , b)))
inr)
inl
fem-proptrunc : FunExt → Excluded-Middle → propositional-truncations-exist
fem-proptrunc fe em = record {
∥_∥ = λ X → ¬¬ X ;
∥∥-is-prop = Π-is-prop (fe _ _) (λ _ → 𝟘-is-prop) ;
∣_∣ = λ x u → u x ;
∥∥-rec = λ i u φ → EM-gives-DNE em _ i (¬¬-functor u φ) }
module _ (pt : propositional-truncations-exist) where
open PropositionalTruncation pt
double-negation-is-truncation-gives-DNE : ((X : 𝓤 ̇ ) → ¬¬ X → ∥ X ∥) → DNE 𝓤
double-negation-is-truncation-gives-DNE {𝓤} f P isp u = ∥∥-rec isp id (f P u)
\end{code}