Martin Escardo 17th December 2018. (This has a connection with injectivity.) We have a look at the algebras of the lifting monad. \begin{code} {-# OPTIONS --without-K --exact-split --safe #-} open import SpartanMLTT module LiftingAlgebras (π£ : Universe) where open import UF-Base open import UF-Subsingletons open import UF-Subsingletons-FunExt open import UF-Equiv open import UF-EquivalenceExamples open import UF-FunExt open import UF-Univalence open import UF-UA-FunExt open import Lifting π£ open import LiftingIdentityViaSIP π£ open import LiftingMonad π£ \end{code} An element of π (π X) amounts to a family of partial elements of X indexed by a proposition: \begin{code} double-π-charac : (X : π€ Μ ) β π (π X) β (Ξ£ P κ π£ Μ , (Ξ£ Q κ (P β π£ Μ ), ((p : P) β (Q p β X)) Γ ((p : P) β is-prop (Q p))) Γ is-prop P) double-π-charac X = Ξ£-cong (Ξ» P β Γ-cong (Ξ³ X P) (β-refl (is-prop P))) where Ξ³ : (X : π€ Μ ) (P : π£ Μ ) β (P β π X) β (Ξ£ Q κ (P β π£ Μ ), ((p : P) β (Q p β X)) Γ ((p : P) β is-prop (Q p))) Ξ³ X P = (P β Ξ£ Q κ π£ Μ , (Q β X) Γ is-prop Q) ββ¨ Ξ Ξ£-distr-β β© (Ξ£ Q κ (P β π£ Μ ), ((p : P) β ((Q p β X) Γ is-prop (Q p)))) ββ¨ Ξ£-cong (Ξ» Q β βΓ) β© (Ξ£ Q κ (P β π£ Μ ), ((p : P) β (Q p β X)) Γ ((p : P) β is-prop (Q p))) β \end{code} The usual definition of algebra of a monad and construction of free algebras: \begin{code} π-algebra : π€ Μ β π£ βΊ β π€ Μ π-algebra X = Ξ£ s κ (π X β X) , (s β Ξ· βΌ id) Γ (s β ΞΌ βΌ s β πΜ s) free-π-algebra : is-univalent π£ β (X : π€ Μ ) β π-algebra (π X) free-π-algebra ua X = ΞΌ , π-unit-leftβΌ ua , π-assocβΌ ua \end{code} We can describe algebras in terms of "join" operations subject to two laws: \begin{code} joinop : π€ Μ β π£ βΊ β π€ Μ joinop X = {P : π£ Μ } β is-prop P β (P β X) β X \end{code} The intuitive idea is that a "join" operation on X consists of, for each proposition P, a map (P β X) β X that "puts together" the elements of a family f : P β X to get an element β f of X. Unfortunately, we won't be able to write simply β f in Agda notation, as the witness that P is a proposition can almost never be automatically inferred and hence has to be written explicitly. To characterize algebras, the join operations have two satisfy the following two laws: \begin{code} π-alg-Lawβ : {X : π€ Μ } β joinop X β π€ Μ π-alg-Lawβ {π€} {X} β = (x : X) β β π-is-prop (Ξ» (p : π) β x) β‘ x π-alg-Lawβ : {X : π€ Μ } β joinop X β π£ βΊ β π€ Μ π-alg-Lawβ {π€} {X} β = (P : π£ Μ ) (Q : P β π£ Μ ) (i : is-prop P) (j : (p : P) β is-prop (Q p)) (f : Ξ£ Q β X) β β (Ξ£-is-prop i j) f β‘ β i (Ξ» p β β (j p) (Ξ» q β f (p , q))) \end{code} Omitting the witnesses of proposition-hood, the above two laws can be written in more standard mathematical notation as follows: β x = x p:π β f r = β β f (p , q) r : Ξ£ {P} Q p:P q:Q(p) \begin{code} π-alg : π€ Μ β π£ βΊ β π€ Μ π-alg X = Ξ£ β κ joinop X , π-alg-Lawβ β Γ π-alg-Lawβ β \end{code} Before proving that we have an equivalence π-algebra X β π-alg X, we characterize the algebra morphisms in terms of joins (unfortunately overloading is not available): \begin{code} β : {X : π€ Μ } β (π X β X) β joinop X β s {P} i f = s (P , f , i) βΜ : {X : π€ Μ } β π-algebra X β joinop X βΜ (s , _) = β s β : {X : π€ Μ } β π-alg X β joinop X β (β , ΞΊ , ΞΉ) = β lawβ : {X : π€ Μ } (a : π-alg X) β π-alg-Lawβ (β a) lawβ (β , ΞΊ , ΞΉ) = ΞΊ lawβ : {X : π€ Μ } (a : π-alg X) β π-alg-Lawβ (β a) lawβ (β , ΞΊ , ΞΉ) = ΞΉ \end{code} The algebra morphisms are the maps that preserve joins. Omitting the first argument of β, the following says that the morphisms are the maps h : X β Y with h (β f) β‘ β h (f p) p:P for all f:PβX. \begin{code} π-morphism-charac : {X : π€ Μ } {Y : π₯ Μ } (s : π X β X) (t : π Y β Y) (h : X β Y) β (h β s βΌ t β πΜ h) β ({P : π£ Μ } (i : is-prop P) (f : P β X) β h (β s i f) β‘ β t i (Ξ» p β h (f p))) π-morphism-charac s t h = qinveq (Ξ» H {P} i f β H (P , f , i)) ((Ξ» {Ο (P , f , i) β Ο {P} i f}) , (Ξ» _ β refl) , (Ξ» _ β refl)) \end{code} We name the other two projections of π-alg: \begin{code} π-alg-const : {X : π€ Μ } (A : π-alg X) β (x : X) β β A π-is-prop (Ξ» (p : π) β x) β‘ x π-alg-const (β , ΞΊ , ΞΉ) = ΞΊ π-alg-iterated : {X : π€ Μ } (A : π-alg X) (P : π£ Μ ) (Q : P β π£ Μ ) (i : is-prop P) (j : (p : P) β is-prop (Q p)) (f : Ξ£ Q β X) β β A (Ξ£-is-prop i j) f β‘ β A i (Ξ» p β β A (j p) (Ξ» q β f (p , q))) π-alg-iterated (β , ΞΊ , ΞΉ) = ΞΉ \end{code} We could write a proof of the following characterization of the π-algebras by composing equivalences as above, but it seems more direct, and just as clear, to write a direct proof, by construction of the equivalence and its inverse. This also emphasizes that the equivalence is definitional, in the sense that the two required equations hold definitionally. \begin{code} π-algebra-gives-alg : {X : π€ Μ } β π-algebra X β π-alg X π-algebra-gives-alg (s , unit , assoc) = β s , unit , (Ξ» P Q i j f β assoc (P , (Ξ» p β Q p , (Ξ» q β f (p , q)) , j p) , i)) π-alg-gives-algebra : {X : π€ Μ } β π-alg X β π-algebra X π-alg-gives-algebra {π€} {X} (β , unit , ΞΉ) = s , unit , assoc where s : π X β X s (P , f , i) = β i f assoc : s β ΞΌ βΌ s β πΜ s assoc (P , g , i) = ΞΉ P (prβ β g) i (Ξ» p β prβ (prβ (g p))) (Ξ» r β prβ (prβ (g (prβ r))) (prβ r)) π-alg-charac : {X : π€ Μ } β π-algebra X β π-alg X π-alg-charac = qinveq π-algebra-gives-alg (π-alg-gives-algebra , ((Ξ» _ β refl) , (Ξ» _ β refl))) \end{code} We now consider an equivalent of π-alg-Lawβ (which is useful e.g. for type injectivity purposes). \begin{code} π-alg-Lawβ' : {X : π€ Μ } β joinop X β π£ βΊ β π€ Μ π-alg-Lawβ' {π€} {X} β = (P : π£ Μ ) (i : is-prop P) (f : P β X) (p : P) β β i f β‘ f p π-alg-Lawβ-givesβ' : propext π£ β funext π£ π£ β funext π£ π€ β {X : π€ Μ } (β : joinop X) β π-alg-Lawβ β β π-alg-Lawβ' β π-alg-Lawβ-givesβ' pe fe fe' {X} β ΞΊ P i f p = Ξ³ where r : f β‘ Ξ» (_ : P) β f p r = dfunext fe' (Ξ» p' β ap f (i p' p)) s : P β‘ π β β {P} i f β‘ β {π} π-is-prop (Ξ» (_ : π) β f p) s refl = apβ β (being-prop-is-prop fe i π-is-prop) r t : P β‘ π t = pe i π-is-prop unique-to-π (Ξ» _ β p) Ξ³ : β i f β‘ f p Ξ³ = β {P} i f β‘β¨ s t β© β π-is-prop (f β (Ξ» _ β p)) β‘β¨ ΞΊ (f p) β© f p β π-alg-Lawβ'-givesβ : {X : π€ Μ } (β : joinop X) β π-alg-Lawβ' β β π-alg-Lawβ β π-alg-Lawβ'-givesβ {π€} {X} β Ο x = Ο π π-is-prop (Ξ» _ β x) * \end{code} We now consider a non-dependent version of π-alg-Lawβ, and show that it is equivalent to π-alg-Lawβ: \begin{code} π-alg-Lawβ' : {X : π€ Μ } β joinop X β π£ βΊ β π€ Μ π-alg-Lawβ' {π€} {X} β = (P Q : π£ Μ ) (i : is-prop P) (j : is-prop Q) (f : P Γ Q β X) β β (Γ-is-prop i j) f β‘ β i (Ξ» p β β j (Ξ» q β f (p , q))) \end{code} The difference with π-alg-Lawβ is that the family f has type P Γ Q β X rather than Ξ£ {P} Q β X, and so the modified, logically equivalent law amounts to β β f (p , q) = β f r p:P q:Q r : P Γ Q One direction of the logical equivalence is trivial: \begin{code} π-alg-Lawβ-givesβ' : {X : π€ Μ } (β : joinop X) β π-alg-Lawβ β β π-alg-Lawβ' β π-alg-Lawβ-givesβ' {π€} {X} β a P Q i j = a P (Ξ» _ β Q) i (Ξ» p β j) \end{code} To establish the converse we need the following lemma for joins, which is interesting on its own right, β f p β‘ β f (k q), p:P q:Q and also gives self-distributivity of joins: β β f (p , q) = β β f (p , q) p:P q:Q q:Q p:P \begin{code} change-of-variables-in-join : {X : π€ Μ } (β : joinop X) (P : π£ Μ ) (i : is-prop P) (Q : π£ Μ ) (j : is-prop Q) (h : P β Q) (k : Q β P) (f : P β X) β is-univalent π£ β β i f β‘ β j (f β k) change-of-variables-in-join β P i Q j h k f ua = cd (eqtoid ua Q P e) β ap (Ξ» - β β j (f β -)) a where cd : (r : Q β‘ P) β β i f β‘ β j (f β Idtofun r) cd refl = ap (Ξ» - β β - f) (being-prop-is-prop (univalence-gives-funext ua) i j) e : Q β P e = qinveq k (h , ((Ξ» q β j (h (k q)) q) , Ξ» p β i (k (h p)) p)) a : Idtofun (eqtoid ua Q P e) β‘ k a = ap β_β (idtoeq'-eqtoid ua Q P e) π-alg-self-distr : {X : π€ Μ } (β : joinop X) (P : π£ Μ ) (i : is-prop P) (Q : π£ Μ ) (j : is-prop Q) β is-univalent π£ β π-alg-Lawβ' β β (f : P Γ Q β X) β β i (Ξ» p β β j (Ξ» q β f (p , q))) β‘ β j (Ξ» q β β i (Ξ» p β f (p , q))) π-alg-self-distr β P i Q j ua lβ' f = β i (Ξ» p β β j (Ξ» q β f (p , q))) β‘β¨ a β© β (Ξ£-is-prop i (Ξ» p β j)) f β‘β¨ b β© β (Ξ£-is-prop j (Ξ» p β i)) (f β (Ξ» t β prβ t , prβ t)) β‘β¨ c β© β j (Ξ» q β β i (Ξ» p β f (p , q))) β where a = (lβ' P Q i j f)β»ΒΉ b = change-of-variables-in-join β (P Γ Q) (Ξ£-is-prop i (Ξ» p β j)) (Q Γ P) (Ξ£-is-prop j (Ξ» p β i)) (Ξ» t β prβ t , prβ t) (Ξ» t β prβ t , prβ t) f ua c = lβ' Q P j i (Ξ» t β f (prβ t , prβ t)) \end{code} Using this we can prove the other direction of the logical equivalence claimed above: \begin{code} π-alg-Lawβ'-givesβ : {X : π€ Μ } (β : joinop X) β is-univalent π£ β funext π£ π€ β π-alg-Lawβ' β β π-alg-Lawβ β π-alg-Lawβ'-givesβ {π€} {X} β ua fe a P Q i j f = β {Ξ£ Q} (Ξ£-is-prop i j) f β‘β¨ b β© β {Ξ£ Q} (Ξ£-is-prop i j) (f' β k') β‘β¨ c β© β {P Γ Ξ£ Q} (Γ-is-prop i (Ξ£-is-prop i j)) f' β‘β¨ d β© β {P} i (Ξ» p β β {Ξ£ Q} (Ξ£-is-prop i j) ((Ξ» Ο β f (p , Ο)) β k p)) β‘β¨ e β© β {P} i (Ξ» p β β {Q p} (j p) (Ξ» q β f (p , q))) β where h : (p : P) β Q p β Ξ£ Q h p q = (p , q) k : (p : P) β Ξ£ Q β Q p k p (p' , q) = transport Q (i p' p) q f' : P Γ Ξ£ Q β X f' (p , p' , q) = f (p , k p (p' , q)) k' : Ξ£ Q β P Γ Ξ£ Q k' (p , q) = p , p , q H : f' β k' βΌ f H (p , q) = ap (Ξ» - β f (p , -)) (j p _ _) b = (ap (β {Ξ£ Q} (Ξ£-is-prop i j)) (dfunext fe H))β»ΒΉ c = (change-of-variables-in-join β (P Γ Ξ£ Q) (Γ-is-prop i (Ξ£-is-prop i j)) (Ξ£ Q) (Ξ£-is-prop i j) prβ k' f' ua)β»ΒΉ d = a P (Ξ£ Q) i (Ξ£-is-prop i j) (Ξ» z β f (prβ z , k (prβ z) (prβ z))) e = (ap (β {P} i) (dfunext fe (Ξ» p β change-of-variables-in-join β (Q p) (j p) (Ξ£ Q) (Ξ£-is-prop i j) (h p) (k p) (Ξ» Ο β f (p , Ο)) ua)))β»ΒΉ \end{code} The algebras form an exponential ideal with the pointwise operations. More generally: \begin{code} Ξ -is-alg : funext π€ π₯ β {X : π€ Μ } (A : X β π₯ Μ ) β ((x : X) β π-alg (A x)) β π-alg (Ξ A) Ξ -is-alg {π€} {π₯} fe {X} A Ξ± = βΒ· , lβ , lβ where βΒ· : {P : π£ Μ } β is-prop P β (P β Ξ A) β Ξ A βΒ· i f x = β (Ξ± x) i (Ξ» p β f p x) lβ : (Ο : Ξ A) β βΒ· π-is-prop (Ξ» p β Ο) β‘ Ο lβ Ο = dfunext fe (Ξ» x β lawβ (Ξ± x) (Ο x)) lβ : (P : π£ Μ ) (Q : P β π£ Μ ) (i : is-prop P) (j : (p : P) β is-prop (Q p)) (f : Ξ£ Q β Ξ A) β βΒ· (Ξ£-is-prop i j) f β‘ βΒ· i (Ξ» p β βΒ· (j p) (Ξ» q β f (p , q))) lβ P Q i j f = dfunext fe (Ξ» x β lawβ (Ξ± x) P Q i j (Ξ» Ο β f Ο x)) \end{code} This is the case for any monad of a certain kind, but the way we proved this above with using our characterizations of the algebras applies only to our monad. The following examples are crucial for injectivity. They say that the universe is an algebra in at least two ways, with β = Ξ£ and β = Ξ respectively. \begin{code} universe-is-algebra-Ξ£ : is-univalent π£ β π-alg (π£ Μ ) universe-is-algebra-Ξ£ ua = sum , k , ΞΉ where sum : {P : π£ Μ } β is-prop P β (P β π£ Μ ) β π£ Μ sum {P} i = Ξ£ k : (X : π£ Μ ) β Ξ£ (Ξ» p β X) β‘ X k X = eqtoid ua (π Γ X) X π-lneutral ΞΉ : (P : π£ Μ ) (Q : P β π£ Μ ) (i : is-prop P) (j : (p : P) β is-prop (Q p)) (f : Ξ£ Q β π£ Μ ) β Ξ£ f β‘ Ξ£ (Ξ» p β Ξ£ (Ξ» q β f (p , q))) ΞΉ P Q i j f = eqtoid ua _ _ Ξ£-assoc universe-is-algebra-Ξ : is-univalent π£ β π-alg (π£ Μ ) universe-is-algebra-Ξ ua = prod , k , ΞΉ where fe : funext π£ π£ fe = univalence-gives-funext ua prod : {P : π£ Μ } β is-prop P β (P β π£ Μ ) β π£ Μ prod {P} i = Ξ k : (X : π£ Μ ) β Ξ (Ξ» p β X) β‘ X k X = eqtoid ua (π β X) X (β-sym (πβ (univalence-gives-funext ua))) ΞΉ : (P : π£ Μ ) (Q : P β π£ Μ ) (i : is-prop P) (j : (p : P) β is-prop (Q p)) (f : Ξ£ Q β π£ Μ ) β Ξ f β‘ Ξ (Ξ» p β Ξ (Ξ» q β f (p , q))) ΞΉ P Q i j f = eqtoid ua _ _ (curry-uncurry' fe fe) \end{code}