Martin Escardo, 27 April 2014
\begin{code}
{-# OPTIONS --without-K --exact-split --safe #-}
module UF-PropIndexedPiSigma where
open import SpartanMLTT
open import UF-Base
open import UF-Subsingletons
open import UF-FunExt
open import UF-Equiv
Π-proj : {X : 𝓤 ̇ } {Y : X → 𝓥 ̇ } (a : X) → Π Y → Y a
Π-proj a f = f a
Π-incl : {X : 𝓤 ̇ } {Y : X → 𝓥 ̇ } → is-prop X → (a : X) → Y a → Π Y
Π-incl {𝓤} {𝓥} {X} {Y} i a y x = transport Y (i a x) y
Π-proj-is-equiv : funext 𝓤 𝓥
→ {X : 𝓤 ̇ } {Y : X → 𝓥 ̇ }
→ is-prop X
→ (a : X) → is-equiv (Π-proj a)
Π-proj-is-equiv {𝓤} {𝓥} fe {X} {Y} i a = γ
where
l : (x : X) → i x x ≡ refl
l x = props-are-sets i (i x x) refl
η : (y : Y a) → transport Y (i a a) y ≡ y
η y = ap (λ - → transport Y - y) (l a)
ε'' : (f : Π Y) {x x' : X} → x ≡ x' → transport Y (i x x') (f x) ≡ f x'
ε'' t {x} refl = ap (λ - → transport Y - (t x)) (l x)
ε' : (f : Π Y) (x : X) → transport Y (i a x) (f a) ≡ f x
ε' f x = ε'' f (i a x)
ε : (f : Π Y) → Π-incl i a (Π-proj a f) ≡ f
ε φ = dfunext fe (ε' φ)
γ : is-equiv (Π-proj a)
γ = qinvs-are-equivs (Π-proj a) (Π-incl i a , ε , η)
prop-indexed-product : funext 𝓤 𝓥
→ {X : 𝓤 ̇ } {Y : X → 𝓥 ̇ }
→ is-prop X
→ (a : X) → Π Y ≃ Y a
prop-indexed-product fe i a = Π-proj a , Π-proj-is-equiv fe i a
prop-indexed-product-one : funext 𝓤 𝓥
→ {X : 𝓤 ̇ } {Y : X → 𝓥 ̇ }
→ (X → 𝟘 {𝓦})
→ Π Y ≃ 𝟙 {𝓣}
prop-indexed-product-one {𝓤} {𝓥} {𝓦} {𝓣} fe {X} {Y} v = γ
where
g : 𝟙 → Π Y
g * x = unique-from-𝟘 {𝓥} {𝓦} (v x)
η : (u : 𝟙) → * ≡ u
η * = refl
ε : (φ : Π Y) → g * ≡ φ
ε φ = dfunext fe u
where
u : (x : X) → g (unique-to-𝟙 φ) x ≡ φ x
u x = unique-from-𝟘 (v x)
γ : Π Y ≃ 𝟙 {𝓣}
γ = qinveq unique-to-𝟙 (g , ε , η)
\end{code}
Added 18th December 2017.
\begin{code}
prop-indexed-sum : {X : 𝓤 ̇ } {Y : X → 𝓥 ̇ }
→ is-prop X
→ (a : X) → Σ Y ≃ Y a
prop-indexed-sum {𝓤} {𝓥} {X} {Y} i a = qinveq f (g , ε , η)
where
f : Σ Y → Y a
f (x , y) = transport Y (i x a) y
g : Y a → Σ Y
g y = a , y
l : (x : X) → i x x ≡ refl
l x = props-are-sets i (i x x) refl
η : (y : Y a) → f (a , y) ≡ y
η y = ap (λ - → transport Y - y) (l a)
c : (x : X) (y : Y x) → x ≡ a → transport Y (i a x) (f (x , y)) ≡ y
c _ y refl = η (f (a , y)) ∙ η y
ε : (σ : Σ Y) → g (f σ) ≡ σ
ε (x , y) = to-Σ-≡ (i a x , c x y (i x a))
prop-indexed-sum-zero : {X : 𝓤 ̇ } {Y : X → 𝓥 ̇ } → (X → 𝟘 {𝓦})
→ Σ Y ≃ (𝟘 {𝓣})
prop-indexed-sum-zero {𝓤} {𝓥} {𝓦} {𝓣} {X} {Y} φ = qinveq f (g , ε , η)
where
f : Σ Y → 𝟘
f (x , y) = 𝟘-elim (φ x)
g : 𝟘 → Σ Y
g = unique-from-𝟘
η : (x : 𝟘) → f (g x) ≡ x
η = 𝟘-induction
ε : (σ : Σ Y) → g (f σ) ≡ σ
ε (x , y) = 𝟘-elim (φ x)
\end{code}