Nicolai Kraus 2012.

This is adapted to our TypeTopology development by Martin Escardo, but
we keep Nicolai's original proof.

The main result is that the type of fixed-points of a weakly constant
endomap is a proposition, in pure MLTT without HoTT/UF extensions.

We also add some consequences obtained in joint work with Martin
Escardo, Thierry Coquand, and Thorsten Altenkirch.

\begin{code}

{-# OPTIONS --without-K --exact-split --safe #-}

module UF-KrausLemma where

open import SpartanMLTT
open import UF-Base
open import UF-Subsingletons

fix : {X : 𝓤 ̇ }  (f : X  X)  𝓤 ̇
fix f = Σ x  domain f , x  f x

key-lemma : {X Y : 𝓤 ̇ } (f : X  Y) (g : wconstant f) {x y : X} (p : x  y)
           ap f p  (g x x)⁻¹  g x y
key-lemma f g {x} refl = sym-is-inverse (g x x)

key-insight : {X Y : 𝓤 ̇ } (f : X  Y)
             wconstant f
             {x : X} (p : x  x)  ap f p  refl
key-insight f g p = key-lemma f g p  (sym-is-inverse (g _ _))⁻¹

transport-ids-along-ids : {X Y : 𝓤 ̇ }
                          {x y : X}
                          (p : x  y)
                          (h k : X  Y)
                          (q : h x  k x)
                         transport  -  h -  k -) p q  (ap h p)⁻¹  q  ap k p
transport-ids-along-ids refl h k q = refl-left-neutral ⁻¹

transport-ids-along-ids' : {X : 𝓤 ̇ }
                           {x : X}
                           (p : x  x)
                           (f : X  X)
                           (q : x  f x)
                          transport  -  -  f -) p q  (p ⁻¹  q)  ap f p
transport-ids-along-ids' {𝓤} {X} {x} p f q = γ
 where
  g : x  x  x  f x
  g r = r ⁻¹  q  (ap f p)

  γ : transport  -  -  f -) p q  p ⁻¹  q  ap f p
  γ = transport-ids-along-ids p id f q  ap g ((ap-id-is-id' p)⁻¹)

\end{code}

The following is what we refer to as Kraus Lemma:

\begin{code}

fix-is-prop : {X : 𝓤 ̇ }  (f : X  X)  wconstant f  is-prop (fix f)
fix-is-prop {𝓤} {X} f g (x , p) (y , q) =
  (x , p)  ≡⟨ to-Σ-≡ (r , refl) 
  (y , p') ≡⟨ to-Σ-≡ (s , t) 
  (y , q)  
    where
     r : x  y
     r = x   ≡⟨ p 
         f x ≡⟨ g x y 
         f y ≡⟨ q ⁻¹ 
           y 

     p' : y  f y
     p' = transport  -  -  f -) r p

     s : y  y
     s = y   ≡⟨ p' 
         f y ≡⟨ q ⁻¹ 
         y   

     q' : y  f y
     q' = transport  -  -  f -) s p'

     t : q'  q
     t = q'                        ≡⟨ transport-ids-along-ids' s f p' 
         (s ⁻¹  p')  ap f s      ≡⟨ ∙assoc (s ⁻¹) p' (ap f s) 
         s ⁻¹  (p'  ap f s)      ≡⟨ ap  -  s ⁻¹  (p'  -)) (key-insight f g s) 
         s ⁻¹  (p'  refl)        ≡⟨ ap  -  s ⁻¹  -) ((refl-right-neutral p')⁻¹) 
         s ⁻¹  p'                 ≡⟨ refl 
        (p'  (q ⁻¹))⁻¹  p'       ≡⟨ ap  -  -  p') ((⁻¹-contravariant p' (q ⁻¹))⁻¹) 
        ((q ⁻¹)⁻¹  (p' ⁻¹))  p'  ≡⟨ ap  -  (-  (p' ⁻¹))  p') (⁻¹-involutive q) 
        (q  (p' ⁻¹))  p'         ≡⟨ ∙assoc q (p' ⁻¹) p' 
         q  ((p' ⁻¹)  p')        ≡⟨ ap  -  q  -) ((sym-is-inverse p')⁻¹) 
         q  refl                  ≡⟨ (refl-right-neutral q)⁻¹ 
         q                         

\end{code}

A main application is to show that, in pure spartan MLTT, if a type
has a wconstant endfunction then it has a propositional truncation.

\begin{code}

from-fix : {X : 𝓤 ̇ } (f : X  X)  fix f  X
from-fix f = pr₁

to-fix : {X : 𝓤 ̇ } (f : X  X)  wconstant f  X  fix f
to-fix f g x = (f x , g x (f x))

from-to-fix : {X : 𝓤 ̇ } (f : X  X) (κ : wconstant f)
             from-fix f  to-fix f κ  f
from-to-fix f κ w = refl

to-from-fix : {X : 𝓤 ̇ } (f : X  X) (κ : wconstant f)
             to-fix f κ  from-fix f  id
to-from-fix f κ _ = fix-is-prop f κ _ _

has-split-support' : 𝓤 ̇  𝓤  ̇
has-split-support' {𝓤} X = Σ P  𝓤 ̇ , is-prop P × (X  P)

fix-has-split-support' : {X : 𝓤 ̇ }
                        collapsible X
                        has-split-support' X
fix-has-split-support' {𝓤} {X} (f , κ) = fix f , fix-is-prop f κ , to-fix f κ , from-fix f

has-prop-truncation : (𝓥 : Universe)  𝓤 ̇  (𝓤  𝓥) ̇
has-prop-truncation {𝓤} 𝓥 X = Σ X'  𝓤 ̇ , is-prop X'
                                        × (X  X')
                                        × ((P : 𝓥 ̇ )  is-prop P  (X  P)  X'  P)

split-truncation : {X : 𝓤 ̇ }  has-split-support' X   𝓥  has-prop-truncation 𝓥 X
split-truncation {𝓤} {X} (X' , i , f , g) V = X' , i , f , λ P j h x'  h (g x')

collapsible-has-prop-truncation : {X : 𝓤 ̇ }
                                 collapsible X
                                  𝓥  has-prop-truncation 𝓥 X
collapsible-has-prop-truncation {𝓤} {X} c = split-truncation (fix-has-split-support' c)

open import UF-PropTrunc

module split-support-and-collapsibility (pe : propositional-truncations-exist) where

 open PropositionalTruncation pe

 has-split-support : 𝓤 ̇  𝓤 ̇
 has-split-support X =  X   X

 has-split-support→ : {X : 𝓤 ̇ }  has-split-support X  has-split-support' X
 has-split-support→ {𝓤} {X} f =  X  , ∥∥-is-prop ,  x   x ) , f

 has-split-support← : {X : 𝓤 ̇ }  has-split-support' X  has-split-support X
 has-split-support← {𝓤} {X} (P , P-is-prop , g , f) = f  ∥∥-rec P-is-prop g

\end{code}

TODO: Are the above two functions mutually inverse and hence we get an
equivalence?

\begin{code}

 collapsible-gives-split-support : {X : 𝓤 ̇ }
                                  collapsible X
                                  has-split-support X
 collapsible-gives-split-support {𝓤} {X} (f , κ) s = x
  where
   g :  X   fix f
   g = ∥∥-rec (fix-is-prop f κ) (to-fix f κ)

   x : X
   x = from-fix f (g s)

 split-support-gives-collapsible : {X : 𝓤 ̇ }
                                  has-split-support X
                                  collapsible X
 split-support-gives-collapsible {𝓤} {X} g = γ
  where
   f : X  X
   f x = g  x 

   κ : (x y : X)  f x  f y
   κ x y = ap g (∥∥-is-prop  x   y )

   γ : collapsible X
   γ = f , κ

\end{code}