
Introduction to Type Theory in Agda
Lecture 3 – Dependent types and equality

Todd Waugh Ambridge

10 April 2024



Lecture Outline

1. Recap – Propositional Logic via Types

2. Predicate Logic via Dependent Types
▶ Π and Σ

3. Type universes
▶ Type, Type1, Type2, . . .

4. Decidable equality

5. Propositional equality
▶ ≡



Lecture Outline

1. Recap – Propositional Logic via Types

2. Predicate Logic via Dependent Types
▶ Π and Σ

3. Type universes
▶ Type, Type1, Type2, . . .

4. Decidable equality

5. Propositional equality
▶ ≡



Recap

In the last lecture, we introduced the propositions-as-types
interpretation in Agda by showing that function types interpret
implication, and further defining:

1. 1 for interpreting truth,

2. 0 for interpreting falsity,

3. ¬-types for interpreting negation,

4. +-types for interpreting disjunction,

5. ×-types for interpreting conjunction.



Lecture Outline

1. Recap – Propositional Logic via Types

2. Predicate Logic via Dependent Types
▶ Π and Σ

3. Type universes
▶ Type, Type1, Type2, . . .

4. Decidable equality

5. Propositional equality
▶ ≡



Dependent Types

To complete our propositions-as-types interpretation of
constructive logic, we need to interpret the two quantifier
connectives of predicate logic:

▶ Universal quantification ∀x : X ,Px ,

▶ Existential quantification ∃x : X ,Px .

These quantifiers are interpreted by Martin-Lof’s dependent types:

▶ Π-types interpret “for all” statements,

▶ Σ-types interpret “there exists” statements.



Dependent Types

To complete our propositions-as-types interpretation of
constructive logic, we need to interpret the two quantifier
connectives of predicate logic:

▶ Universal quantification ∀x : X ,Px ,

▶ Existential quantification ∃x : X ,Px .

These quantifiers are interpreted by Martin-Lof’s dependent types:

▶ Π-types interpret “for all” statements,

▶ Σ-types interpret “there exists” statements.



MLTT in Agda

(a) Function types →,

(b) Natural numbers N,

(c) The unit 1 and empty 0 types,

(d) Disjoint union types +,

(e) Binary product types ×,

(f) Dependent function types Π,

(g) Dependent pair types Σ,

(h) Identity types = (Lecture 3),

(i) Type universes U0,U1, ... (Lecture 3).



Dependent Types – Π-types

Earlier, we introduced the dependent type family,
is-odd : N → Type. But this isn’t the first type family we’ve seen:

▶ + , × : Type → Type → Type are binary type families,

▶ Each of the induction principles featured functions
P : X → Type – these are also type families.

These induction principles also featured dependent functions
p : (x : X ) → P(x).

N-induction : -- Type family

(P : N → Type)

→ (p0 : P zero)

-- Dependent function

→ (ps : (n : N) → P n → P (succ n))

...



Dependent Types – Π-types

Earlier, we introduced the dependent type family,
is-odd : N → Type. But this isn’t the first type family we’ve seen:

▶ + , × : Type → Type → Type are binary type families,

▶ Each of the induction principles featured functions
P : X → Type – these are also type families.

These induction principles also featured dependent functions
p : (x : X ) → P(x).

N-induction : -- Type family

(P : N → Type)

→ (p0 : P zero)

-- Dependent function

→ (ps : (n : N) → P n → P (succ n))

...



Dependent Types – Π-types

Earlier, we introduced the dependent type family,
is-odd : N → Type. But this isn’t the first type family we’ve seen:

▶ + , × : Type → Type → Type are binary type families,

▶ Each of the induction principles featured functions
P : X → Type – these are also type families.

These induction principles also featured dependent functions
p : (x : X ) → P(x).

N-induction : -- Type family

(P : N → Type)

→ (p0 : P zero)

-- Dependent function

→ (ps : (n : N) → P n → P (succ n))

...



Dependent Types – Π-types

Earlier, we introduced the dependent type family,
is-odd : N → Type. But this isn’t the first type family we’ve seen:

▶ + , × : Type → Type → Type are binary type families,

▶ Each of the induction principles featured functions
P : X → Type – these are also type families.

These induction principles also featured dependent functions
p : (x : X ) → P(x).

N-induction : -- Type family

(P : N → Type)

→ (p0 : P zero)

-- Dependent function

→ (ps : (n : N) → P n → P (succ n))

...



Dependent Types – Π-types

Given a type family P : X → Type, a dependent function
p : (x : X ) → P(x) is a function whose domain type P(x) : Type
depends on the value of the given argument x : X .

Clearly, as we have already seen a fair few dependent functions,
they are built-in to Agda, just like non-dependent functions.

While non-dependent functions f : A → B are terms of function
types, dependent functions f : (x : X ) → Y x are terms of Π-types.



Dependent Types – Π-types

Given a type family P : X → Type, a dependent function
p : (x : X ) → P(x) is a function whose domain type P(x) : Type
depends on the value of the given argument x : X .

Clearly, as we have already seen a fair few dependent functions,
they are built-in to Agda, just like non-dependent functions.

While non-dependent functions f : A → B are terms of function
types, dependent functions f : (x : X ) → Y x are terms of Π-types.



Dependent Types – Π-types

Γ ⊢ X : Type Γx : X ⊢ Y (x) : Type

Γ ⊢ Π(x :X )Y : Type
(Π-Form)

Γ, x : X ⊢ y : Y (x)

Γ ⊢ λ(x : X ).y : Π(x :X )Y
(Π-Intro)

Γ ⊢ f : Π(x :X )Y Γ ⊢ a : X

Γ ⊢ f (a) : Y (a)
(Π-Elim)

Γ, x : X ⊢ y : Y (x) Γ ⊢ a : X

Γ ⊢ (λ(a : A).b) (a) = y [a/x ] : B(a)
(Π-Comp)



Dependent Types – Π-types

We can align Agda’s syntax for Π-types with MLTT’s.

Note that non-dependent functions are just special cases of
dependent functions, where the type family P : X → Type is
constant.

(X → Y ) = Π x : X ,Y



Dependent Types – Π-types

While non-dependent functions interpret implication, dependent
functions interpret universal quantification. That is, to prove
∀x : X ,P x holds, we need to define a dependent function
f : Π x : X ,P x .

As an example, let’s prove that we can decide whether
is-odd n : Type holds for every n : N. This proof is inductive,
following the definition of is-odd : N → Type itself.



Dependent Types – Π-types

While non-dependent functions interpret implication, dependent
functions interpret universal quantification. That is, to prove
∀x : X ,P x holds, we need to define a dependent function
f : Π x : X ,P x .

As an example, let’s prove that we can decide whether
is-odd n : Type holds for every n : N. This proof is inductive,
following the definition of is-odd : N → Type itself.



Dependent Types – Π-types

While non-dependent functions interpret implication, dependent
functions interpret universal quantification. That is, to prove
∀x : X ,P x holds, we need to define a dependent function
f : Π x : X ,P x .

As an example, let’s prove that we can decide whether
is-odd n : Type holds for every n : N. This proof is inductive,
following the definition of is-odd : N → Type itself.



Dependent Types – Π-types

Let’s see another example: first we define the binary type family
that corresponds to the order on natural numbers.

Then, we prove that, for every n : N, it is the case that n < succ n.



MLTT in Agda

(a) Function types →,

(b) Natural numbers N,

(c) The unit 1 and empty 0 types,

(d) Disjoint union types +,

(e) Binary product types ×,

(f) Dependent function types Π,

(g) Dependent pair types Σ,

(h) Identity types = (Lecture 3),

(i) Type universes U0,U1, ... (Lecture 3).



Dependent Types – Σ-types

Given a type family Y : X → Type, how do we interpret the
concept that there exists a term x : X such that Y x : Type is
true?

The way existential quantification works is the second key
difference between constructive and classical logic. Classically, we
can show that there exists an x : X that satisfies Y x by showing
that the lack of such an x : X leads to a contradiction.

But this argument doesn’t hold in constructive maths:
constructively, to show that Y x holds, we have to actually specify
which x : X is satisfactory.



Dependent Types – Σ-types

Given a type family Y : X → Type, how do we interpret the
concept that there exists a term x : X such that Y x : Type is
true?

The way existential quantification works is the second key
difference between constructive and classical logic. Classically, we
can show that there exists an x : X that satisfies Y x by showing
that the lack of such an x : X leads to a contradiction.

But this argument doesn’t hold in constructive maths:
constructively, to show that Y x holds, we have to actually specify
which x : X is satisfactory.



Dependent Types – Σ-types

Given a type family Y : X → Type, how do we interpret the
concept that there exists a term x : X such that Y x : Type is
true?

The way existential quantification works is the second key
difference between constructive and classical logic. Classically, we
can show that there exists an x : X that satisfies Y x by showing
that the lack of such an x : X leads to a contradiction.

But this argument doesn’t hold in constructive maths:
constructively, to show that Y x holds, we have to actually specify
which x : X is satisfactory.



Dependent Types – Σ-types

So, to show that ∃ x : X ,Y x , we need to provide a pair of terms:

1. A term x : X , called the witness of Y ,

2. A proof term Y x : Type, which depends on the witness.

In MLTT, these dependent pairs are called Σ-types. As with
non-dependent pairs (i.e. ×-types), we define them using record.



Dependent Types – Σ-types

Γ ⊢ X : Type Γ, x : X ⊢ Y (x) : Type

Γ ⊢ Σ(x :X )Y : Type
(Σ-Form)

Γ, x : X ⊢ Y (x) : Type Γ ⊢ w : X Γ ⊢ y : Y (a)

Γ ⊢ (w , p) : Σ(w :X )Y
(Σ-Intro)

Γ,z:Σ(x :X )Y

⊢P(z):Type
Γ, w :X ,

y :Y (w) ⊢ p((w , y)) : P((w , y))

Γ, z : Σ(x :X )Y ⊢ Σ-induction(P, p, z) : P(z)
(Σ-Elim)

Γ,z:Σ(x :X )Y

⊢P(z):Type
Γ, w :X ,

y :Y (w) ⊢ p((w , y)) : P((w , y))

Γ, a:X
b:Y (a) ⊢ Σ-induction(P, p, (a, b)) = p((a, b)) : P((a, b))

(Σ-Comp)



Dependent Types – Σ-types

We can now re-define ×-types as the non-dependent case of
Σ-types (as with non-dependent functions and Π-types).



Dependent Types – Σ-types

As an example of using Σ-types, let’s prove that, for every n : N,
there exists an m : N larger than it.



Dependent Types – Σ-types

As an example of using Σ-types, let’s prove that, for every n : N,
there exists an m : N larger than it.

In the above, we chose to specify succ n as the witness that there
is a number bigger than n. But we could have chose succ(succ n)
or add 1000 n...

The term that we choose as a witness changes the computational
content of the resulting proof. Therefore, in constructive type
theory, the method of proving something is relevant — not just the
fact that we have proved it.

This is called proof relevance.



Dependent Types – Σ-types

As an example of using Σ-types, let’s prove that, for every n : N,
there exists an m : N larger than it.

In the above, we chose to specify succ n as the witness that there
is a number bigger than n. But we could have chose succ(succ n)
or add 1000 n...

The term that we choose as a witness changes the computational
content of the resulting proof. Therefore, in constructive type
theory, the method of proving something is relevant — not just the
fact that we have proved it.

This is called proof relevance.



Dependent Types – Σ-types

As an example of using Σ-types, let’s prove that, for every n : N,
there exists an m : N larger than it.

In the above, we chose to specify succ n as the witness that there
is a number bigger than n. But we could have chose succ(succ n)
or add 1000 n...

The term that we choose as a witness changes the computational
content of the resulting proof. Therefore, in constructive type
theory, the method of proving something is relevant — not just the
fact that we have proved it.

This is called proof relevance.



Dependent Types – Σ-types

Another important point about Σ-types is that they form
collections in our type theory.

For example, the type Σ(n:N) is-odd n collects every possible pair
of a number with a proof of its oddness. Therefore, this is the type
of odd numbers itself.



Dependent Types – Σ-types

Another important point about Σ-types is that they form
collections in our type theory.

For example, the type Σ(n:N) is-odd n collects every possible pair
of a number with a proof of its oddness. Therefore, this is the type
of odd numbers itself.



Dependent Types – Σ-types

But what if we want to collect types themselves?

For example, we could carve out a subset of our logic that relates
to the Boolean-logic; i.e., we could define a Σ-type that collects all
decidable types together.

Well, we could, if not for that we get a type error! What is going
on here? And how do we fix it? What does Set1 != Set mean???



Dependent Types – Σ-types

But what if we want to collect types themselves?

For example, we could carve out a subset of our logic that relates
to the Boolean-logic; i.e., we could define a Σ-type that collects all
decidable types together.

Well, we could, if not for that we get a type error! What is going
on here? And how do we fix it? What does Set1 != Set mean???



Lecture Outline

1. Recap – Propositional Logic via Types

2. Predicate Logic via Dependent Types
▶ Π and Σ

3. Type universes
▶ Type, Type1, Type2, . . .

4. Decidable equality

5. Propositional equality
▶ ≡



Type Universes

I’ve been deliberately vague about what Type itself is. In
Martin-Lof’s first type theory (which appeared in a 1971 preprint),
there were terms and there were types — terms had types, but
types were just types. For example, a : A, but A : Type.

This raises the interesting question: what is the type of Type?
Well, the 1971 type theory had an axiom that said

Type : Type.

But, similarly to Russell with set theory, Girard showed that this
axiom made the system inconsistent.



Type Universes

I’ve been deliberately vague about what Type itself is. In
Martin-Lof’s first type theory (which appeared in a 1971 preprint),
there were terms and there were types — terms had types, but
types were just types. For example, a : A, but A : Type.

This raises the interesting question: what is the type of Type?
Well, the 1971 type theory had an axiom that said

Type : Type.

But, similarly to Russell with set theory, Girard showed that this
axiom made the system inconsistent.



Type Universes

I’ve been deliberately vague about what Type itself is. In
Martin-Lof’s first type theory (which appeared in a 1971 preprint),
there were terms and there were types — terms had types, but
types were just types. For example, a : A, but A : Type.

This raises the interesting question: what is the type of Type?
Well, the 1971 type theory had an axiom that said

Type : Type.

But, similarly to Russell with set theory, Girard showed that this
axiom made the system inconsistent.



MLTT in Agda

(a) Function types →,

(b) Natural numbers N,

(c) The unit 1 and empty 0 types,

(d) Disjoint union types +,

(e) Binary product types ×,

(f) Dependent function types Π,

(g) Dependent pair types Σ,

(h) Type universes Type0,Type1, ...,

(i) Identity types ≡.



Type Universes

So Martin-Lof went back to the drawing board, and built his next
type theory (1972’s MLTT) around the idea of countably-many
type universes:

Type : Type1 : Type2 : . . .

A type universe is a type whose terms are also types.

Agda also has type universes (but with the annoying name Set):

Set : Set1 : Set2 : . . .



Type Universes

So Martin-Lof went back to the drawing board, and built his next
type theory (1972’s MLTT) around the idea of countably-many
type universes:

Type : Type1 : Type2 : . . .

A type universe is a type whose terms are also types.

Agda also has type universes (but with the annoying name Set):

Set : Set1 : Set2 : . . .



Type Universes

So Martin-Lof went back to the drawing board, and built his next
type theory (1972’s MLTT) around the idea of countably-many
type universes:

Type : Type1 : Type2 : . . .

A type universe is a type whose terms are also types.

Agda also has type universes (but with the annoying name Set):

Set : Set1 : Set2 : . . .



Type Universes

So that we don’t have to rename a countably infinite number of
terms let’s properly rename Set to Type using Agda’s builtin file
for type universes.

In that file, we can see a glimpse of how type universes are
implemented in Agda. The idea is that Type, Type1, Type2, etc.
are actually syntax sugars for the type universes Type lzero,
Type (lsuc lzero), Type (lsuc (lsuc lzero)); where these
objects beginning with l are called universe levels.

Now, let’s redefine Π and Σ to correctly use type universes.



Type Universes

So that we don’t have to rename a countably infinite number of
terms let’s properly rename Set to Type using Agda’s builtin file
for type universes.

In that file, we can see a glimpse of how type universes are
implemented in Agda. The idea is that Type, Type1, Type2, etc.
are actually syntax sugars for the type universes Type lzero,
Type (lsuc lzero), Type (lsuc (lsuc lzero)); where these
objects beginning with l are called universe levels.

Now, let’s redefine Π and Σ to correctly use type universes.



Type Universes

So that we don’t have to rename a countably infinite number of
terms let’s properly rename Set to Type using Agda’s builtin file
for type universes.

In that file, we can see a glimpse of how type universes are
implemented in Agda. The idea is that Type, Type1, Type2, etc.
are actually syntax sugars for the type universes Type lzero,
Type (lsuc lzero), Type (lsuc (lsuc lzero)); where these
objects beginning with l are called universe levels.

Now, let’s redefine Π and Σ to correctly use type universes.



Type Universes

Now that we have universes, we can define the type of decidable
types.



Lecture Outline

1. Recap – Propositional Logic via Types

2. Predicate Logic via Dependent Types
▶ Π and Σ

3. Type universes
▶ Type, Type1, Type2, . . .

4. Decidable equality

5. Propositional equality
▶ ≡



Decidable equality

We finally have a full, well defined, Type-valued first-order
(predicate) logic. The final step is to have an interpretation of
equality.

In the second exercise class, we played around with this
Type-valued logic. For example, we defined an equality relation on
the Booleans and another on the natural numbers.

It is important to realise here that, given any two terms a, b : Bool
(respectively n,m : N), a == b (respectively n == m) is a type.



Decidable equality

We finally have a full, well defined, Type-valued first-order
(predicate) logic. The final step is to have an interpretation of
equality.

In the second exercise class, we played around with this
Type-valued logic. For example, we defined an equality relation on
the Booleans and another on the natural numbers.

It is important to realise here that, given any two terms a, b : Bool
(respectively n,m : N), a == b (respectively n == m) is a type.



Decidable equality

We finally have a full, well defined, Type-valued first-order
(predicate) logic. The final step is to have an interpretation of
equality.

In the second exercise class, we played around with this
Type-valued logic. For example, we defined an equality relation on
the Booleans and another on the natural numbers.

It is important to realise here that, given any two terms a, b : Bool
(respectively n,m : N), a == b (respectively n == m) is a type.



Decidable equality

Recall also that, in the exercise class, we showed the equality
relation on the natural numbers is indeed an equality relation: it is
reflexive, symmetric and transitive.

==-is-reflexive : (n : N) → n == n
==-is-reflexive zero = ⋆
==-is-reflexive (succ n) = ==-is-reflexive n

==-is-symmetric : (n m : N) → n == m → m == n
==-is-symmetric zero zero p = ⋆
==-is-symmetric (succ n) (succ m) p = ==-is-symmetric n m p

==-is-transitive : (n m k : N) → n == m → m == k → n == k
==-is-transitive zero zero zero p q = ⋆
==-is-transitive (succ n) (succ m) (succ k) p q

= ==-is-transitive n m k p q



Decidable equality

The Booleans and the natural numbers have what we call
decidable equality; i.e., given any two terms a, b : Bool
(respectively n,m : N), the question of whether a == b
(respectively n == m) is a decidable proposition.

This is the same as saying they are decidable types.

The proof of the former is by the fact that truth and falsity are
decidable propositions; i.e. 1 and 0 are decidable types. The latter
proof is also by these facts, and induction.



Decidable equality

The Booleans and the natural numbers have what we call
decidable equality; i.e., given any two terms a, b : Bool
(respectively n,m : N), the question of whether a == b
(respectively n == m) is a decidable proposition.

This is the same as saying they are decidable types.

The proof of the former is by the fact that truth and falsity are
decidable propositions; i.e. 1 and 0 are decidable types. The latter
proof is also by these facts, and induction.



Decidable equality

The Booleans and the natural numbers have what we call
decidable equality; i.e., given any two terms a, b : Bool
(respectively n,m : N), the question of whether a == b
(respectively n == m) is a decidable proposition.

This is the same as saying they are decidable types.

The proof of the former is by the fact that truth and falsity are
decidable propositions; i.e. 1 and 0 are decidable types. The latter
proof is also by these facts, and induction.



Decidable equality

But, as we discussed last lecture, the law of excluded middle1 does
not hold constructively – it is not the case that every proposition is
decidable.

It is also not the case that every type has decidable equality;
consider the example of functions from last lecture. We cannot
decide whether or not two functions f , g : N → Bool are equal,
because any procedure that could do this cannot be guaranteed to
halt.

1This is something that we cannot prove nor disprove in our type theory; we
could, if we wanted to (which we don’t), add it as an axiom and our theory
would remain consistent.



Decidable equality

But, as we discussed last lecture, the law of excluded middle1 does
not hold constructively – it is not the case that every proposition is
decidable.

It is also not the case that every type has decidable equality;
consider the example of functions from last lecture. We cannot
decide whether or not two functions f , g : N → Bool are equal,
because any procedure that could do this cannot be guaranteed to
halt.

1This is something that we cannot prove nor disprove in our type theory; we
could, if we wanted to (which we don’t), add it as an axiom and our theory
would remain consistent.



Decidable equality

So, have I lied to you? Because last lecture I entirely motivated
the Type-valued logic by saying we could it to define equality on
functions; i.e., I said we could define a type family

(N → Bool) → (N → Bool) → Type.

But how do we actually go about defining this?



Lecture Outline

1. Recap – Propositional Logic via Types

2. Predicate Logic via Dependent Types
▶ Π and Σ

3. Type universes
▶ Type, Type1, Type2, . . .

4. Decidable equality

5. Propositional equality
▶ ≡



Propositional equality
We need to think about equality much more generally. In a
first-order logic with equality, equality is itself considered to be a
proposition.

This suggests that, as with the other connectives of predicate
logic, it must be interpreted as a type (family).

Thus far we have interpreted propositional equality differently for
each type, but this is not necessary. Rather than thinking about
equality as type families

Bool → Bool → Type,

or N → N → Type,

or (N → Bool) → (N → Bool) → Type . . .



Propositional equality
We need to think about equality much more generally. In a
first-order logic with equality, equality is itself considered to be a
proposition.

This suggests that, as with the other connectives of predicate
logic, it must be interpreted as a type (family).

Thus far we have interpreted propositional equality differently for
each type, but this is not necessary. Rather than thinking about
equality as type families

Bool → Bool → Type,

or N → N → Type,

or (N → Bool) → (N → Bool) → Type . . .



Propositional equality
We need to think about equality much more generally. In a
first-order logic with equality, equality is itself considered to be a
proposition.

This suggests that, as with the other connectives of predicate
logic, it must be interpreted as a type (family).

Thus far we have interpreted propositional equality differently for
each type, but this is not necessary. Rather than thinking about
equality as type families

Bool → Bool → Type,

or N → N → Type,

or (N → Bool) → (N → Bool) → Type . . .



Propositional equality
We need to think about equality much more generally. In a
first-order logic with equality, equality is itself considered to be a
proposition.

This suggests that, as with the other connectives of predicate
logic, it must be interpreted as a type (family).

Thus far we have interpreted propositional equality differently for
each type, but this is not necessary. Rather than thinking about
equality as type families

Bool → Bool → Type,

or N → N → Type,

or (N → Bool) → (N → Bool) → Type . . .



Propositional equality
We need to think about equality much more generally. In a
first-order logic with equality, equality is itself considered to be a
proposition.

This suggests that, as with the other connectives of predicate
logic, it must be interpreted as a type (family).

Thus far we have interpreted propositional equality differently for
each type, but this is not necessary. Rather than thinking about
equality as type families

Bool → Bool → Type,

or N → N → Type,

or (N → Bool) → (N → Bool) → Type . . .



Propositional equality
We need to think about equality much more generally. In a
first-order logic with equality, equality is itself considered to be a
proposition.

This suggests that, as with the other connectives of predicate
logic, it must be interpreted as a type (family).

Thus far we have interpreted propositional equality differently for
each type, but this is not necessary. Rather than thinking about
equality as type families

Bool → Bool → Type,

or N → N → Type,

or (N → Bool) → (N → Bool) → Type . . .



MLTT in Agda

(a) Function types →,

(b) Natural numbers N,

(c) The unit 1 and empty 0 types,

(d) Disjoint union types +,

(e) Binary product types ×,

(f) Dependent function types Π,

(g) Dependent pair types Σ,

(h) Type universes Type0,Type1, ...,

(i) Identity types ≡.



Propositional equality

...let’s just think of it as a single type family.

This type family would have to depend on both the type and the
two elements of that type that we are trying to show are equal.

Γ ⊢ A : Typei Γ ⊢ x : A Γ ⊢ y : A

Γ ⊢ x ≡A y : Typei
(≡-Form)



Propositional equality

...let’s just think of it as a single type family.

This type family would have to depend on both the type and the
two elements of that type that we are trying to show are equal.

Γ ⊢ A : Typei Γ ⊢ x : A Γ ⊢ y : A

Γ ⊢ x ≡A y : Typei
(≡-Form)



Propositional equality

But how would we introduce elements of these types?

When can we genuinely decide that two elements x , y : X of any
type X : Type are equal?



Propositional equality

But how would we introduce elements of these types?

When can we genuinely decide that two elements x , y : X of any
type X : Type are equal?



Propositional equality

But how would we introduce elements of these types?

When can we genuinely decide that two elements x , y : X of any
type X : Type are equal?

Well... only when they are literally the same thing.

Γ ⊢ A : Typei Γ ⊢ x : A

Γ ⊢ refl x : x ≡A x
(≡-Intro)



Propositional equality

data _≡_ {i : Level} {X : Type i} : X → X → Type i where

refl : (x : X) → x ≡ x

By the above, for any two elements x , y : X of the same type
X : Type there is a type x ≡ y : Type whose terms are
identifications of x and y .

These types have one single constructor, which states the
reflexivity, which states the reflexivity law of equality: every
element x : X is equal to itself.

Therefore, for now, the only way of introducing a term of these
types is by writing refl x : x ≡ x ; but we cannot prove that this is
the only way of identifying two things2.

2This is called Axiom K; it is by default on in Agda, but I have swithced it
off for this course because it is not provable or disprovable in MLTT.



Propositional equality

data _≡_ {i : Level} {X : Type i} : X → X → Type i where

refl : (x : X) → x ≡ x

By the above, for any two elements x , y : X of the same type
X : Type there is a type x ≡ y : Type whose terms are
identifications of x and y .

These types have one single constructor, which states the
reflexivity, which states the reflexivity law of equality: every
element x : X is equal to itself.

Therefore, for now, the only way of introducing a term of these
types is by writing refl x : x ≡ x ; but we cannot prove that this is
the only way of identifying two things2.

2This is called Axiom K; it is by default on in Agda, but I have swithced it
off for this course because it is not provable or disprovable in MLTT.



Propositional equality

data _≡_ {i : Level} {X : Type i} : X → X → Type i where

refl : (x : X) → x ≡ x

By the above, for any two elements x , y : X of the same type
X : Type there is a type x ≡ y : Type whose terms are
identifications of x and y .

These types have one single constructor, which states the
reflexivity, which states the reflexivity law of equality: every
element x : X is equal to itself.

Therefore, for now, the only way of introducing a term of these
types is by writing refl x : x ≡ x ; but we cannot prove that this is
the only way of identifying two things2.

2This is called Axiom K; it is by default on in Agda, but I have swithced it
off for this course because it is not provable or disprovable in MLTT.



Propositional equality

All we can say for now is that the type x ≡ y : Type is definitely
inhabited if x and y are genuinely (judgementally) equal.



Next time...

Next lecture, we will look at the identity type in more detail,
exploring how this expands our idea of proof relevance in type
theory. Finally, we will see how thinking about equality in MLTT
leads us towards univalent type theory.

Please join me in the exercise classes, where you can get
experience of programming Type Theory in Agda yourself!


