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Recap – Definition of N

In the last lecture, we got started with type theory in Agda by
defining the natural numbers N as an inductive type.

Γ ⊢ N : Type
(N-Form)

Γ ⊢ 0 : N
(N-Intro0)

Γ ⊢ n : N
Γ ⊢ succ n : N

(N-Intros)

data N : Type where

zero : N
succ : N → N



Recap – Definition of N

Γ, n : N ⊢ P(n) : Type Γ ⊢ p0 : P(0)
Γ,n:N,pn:P(n)

⊢ps(n,pn):P(succ n)

Γ, n : N ⊢ N-induction(P, p0, ps , n) : P(n)
(N-Elim)

Γ, n : N ⊢ P(n) : Type Γ ⊢ p0 : P(0)
Γ,n:N,pn:P(n)

⊢ps(n,pn):P(succ n)

Γ ⊢ N-induction(P, p0, ps , 0) = p0 : P(0)
(N-Comp0)

Γ, n : N ⊢ P(n) : Type Γ ⊢ p0 : P(0)
Γ,n:N,pn:P(n)

⊢ps(n,pn):P(succ n)

Γ, n : N ⊢ N-induction(P,p0,ps ,succ n)
=ps(n,N-induction(P,p0,ps ,n))

: P(succ n)
(N-Comps)



Recap – Definition of N

N-induction : (P : N → Type)

→ (p0 : P zero)

→ (ps : (n : N) → P n → P (succ n))

→ (n : N) → P n

N-induction P p0 ps zero = p0
N-induction P p0 ps (succ n) = ps n IH

where

IH : P n

IH = N-induction P p0 ps n



Recap – Definition of N

In the exercise class, we defined some basic functions recursively by
pattern matching...

add : N → N → N
add zero m = m

add (succ n) m = succ (add n m)

...and also by using the induction principle, derived from the typing
rules of natural numbers in MLTT.

add' : N → N → N
add' n = N-induction (λ _ → N) n (λ _ r → succ r)



Recap – Definition of N

Note that induction is dependent: it takes a type family
P : N → Type and returns a term n : P n.

N-induction : (P : N → Type)

→ (p0 : P zero)

→ (ps : (n : N) → P n → P (succ n))

→ (n : N) → P n

But, when P is a constant function (as with λ _ → N on the
previous slide), we can instead think of this as a recursion principle.

N-elim : {X : Type} → X → (N → X → X) → N → X

N-elim {X} = N-induction (λ _ → X)

add'' : N → N → N
add'' n = N-elim n (λ _ → succ)



Recap

Defining functions is all well and good, but Agda’s true strength
comes from the fact that it is a proof assistant as well as a
programming language.

Recall that, last lecture, we learned that (via the Curry-Howard
correspondence/propositions-as-types interpretation) MLTT
corresponds to constructive predicate logic.

This means that, in our Agda setting, we can directly program
proofs to mathematical statements.
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Boolean Logic – Type

Before we define a logic based on types, let’s look at a logic we are
more familiar with; i.e. logic as defined on the Booleans.

First, let’s define a type of Boolean values.

data Bool : Type where

tt ff : Bool



Boolean Logic – Type

We won’t worry too much about this type’s MLTT typing rules,
but its induction (and, hence, recursion) principle is clear.

Bool-induction : (P : Bool → Type)

→ (pt : P tt) (pf : P ff)

→ (x : Bool) → P x

Bool-induction P pt pf tt = pt

Bool-induction P pt pf ff = pf

Bool-elim : A → A → Bool → A

Bool-elim {A} = Bool-induction (λ _ → A)



Boolean Logic – Propositional Connectives

Next, let’s go as far as interpreting Boolean propositional logic.
In order to interpret propositional logic, we need interpretations of:

▶ Truth,

▶ Falsity,

▶ Implication,

▶ Negation,

▶ Disjunction,

▶ Conjunction.
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Boolean Logic – Propositional Connectives
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Boolean Logic – Propositional Connectives

Next, let’s go as far as interpreting Boolean propositional logic.
In order to interpret propositional logic, we need interpretations of:

P Q P || Q

tt tt tt

tt ff tt

ff tt tt

ff ff ff

▶ Truth,

▶ Falsity,

▶ Implication,

▶ Negation,

▶ Disjunction,

▶ Conjunction.



Boolean Logic – Propositional Connectives

Next, let’s go as far as interpreting Boolean propositional logic.
In order to interpret propositional logic, we need interpretations of:

_||_ : Bool → Bool → Bool

tt || Q = tt

ff || Q = Q

-- _||_ P = Bool-elim tt P

▶ Truth,

▶ Falsity,

▶ Implication,

▶ Negation,

▶ Disjunction,

▶ Conjunction.



Boolean Logic – Propositional Connectives

Next, let’s go as far as interpreting Boolean propositional logic.
In order to interpret propositional logic, we need interpretations of:

P Q P && Q

tt tt tt

tt ff ff

ff tt ff

ff ff ff

▶ Truth,

▶ Falsity,
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▶ Negation,

▶ Disjunction,
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Boolean Logic – Propositional Connectives

Next, let’s go as far as interpreting Boolean propositional logic.
In order to interpret propositional logic, we need interpretations of:

_&&_ : Bool → Bool → Bool

tt && Q = Q

ff && Q = ff

-- _&&_ Q = Bool-elim Q ff

▶ Truth,

▶ Falsity,

▶ Implication,

▶ Negation,

▶ Disjunction,

▶ Conjunction.



Boolean Logic – Examples

Let’s see some example computations of logical propositions:

Modus ponens says that if P and P ⇒ Q hold, then Q holds.

modus-ponens' : Bool → Bool → Bool

modus-ponens' P Q = ((P ⇒ Q) && P) ⇒ Q

Modus tollendo ponens says that if P or Q hold, and not P holds,
then Q holds.

modus-tollendo-ponens' : Bool → Bool → Bool

modus-tollendo-ponens' P Q = ((P || Q) && ! P) ⇒ Q



Boolean Logic – Examples

We can then check whether Agda correctly deduces these
statements are true by computing the answer of their conjunction
on all Boolean values.

run-ex : (Bool → Bool → Bool) → Bool

run-ex ex = ex tt tt

&& ex tt ff

&& ex ff tt

&& ex ff ff

We use (e.g.) C-c C-n run-ex modus-ponens' to run the
computation.



Boolean Logic – Examples

We can also add numbers to our logic, and define propositions
such as “Is n an odd number?”.

is-odd? : N → Bool

is-odd? 0 = ff

is-odd? 1 = tt

is-odd? (succ (succ n))

= is-odd? n

is-odd?' : N → Bool

is-odd?' 0 = ff

is-odd?' (succ n) = ! is-odd?' n

-- is-odd?' = N-elim ff (λ _ r → ! r)
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The Decidability Problem

So far so good...

But the problem with Boolean logic is that it is not very
expressive. There are many things we would like to reason about
that cannot be captured by a Bool.

For example, let’s say we want to prove that our two definitions of
is-odd? are equal.

is-odd-functions-equal : Bool

is-odd-functions-equal = is-odd? === is-odd?'

We would first need to define equality _===_ on functions
N → Bool. But how can we do this?



The Decidability Problem

Perhaps something like...

_==_ : Bool → Bool → Bool

tt == Q = Q

ff == Q = ! Q

-- _==_ P = Bool-elim P (! P)

_===_ : (N → Bool) → (N → Bool) → Bool

f === g = (f 0 == g 0)

&& ((λ n → f (succ n)) === (λ n → g (succ n)))

But Agda cannot verify this will ever produce an answer.



The Decidability Problem

_===_ : (N → Bool) → (N → Bool) → Bool

f === g = (f 0 == g 0)

&& ((λ n → f (succ n)) === (λ n → g (succ n)))

This algorithm checks whether f 0 == g 0, and then
f 1 == g 1, and then ...

This procedure is clearly never going to terminate if each of these
values reduces to tt — it will never return an answer.

Therefore, we cannot decide whether f === g should reduce to
ttor ff.



The Decidability Problem

Propositions P that can be reduced to tt or ff are called
decidable propositions.

The law of excluded middle, P ∨ ¬P, holds for all decidable
propositions.

Of course, if we take Bool as our type of propositions, then every
definable proposition immediately satisfies the law of excluded
middle by definition of being a Boolean.

is-decidable' : Bool → Bool

is-decidable' P = P || ! P

lem : Bool

lem = is-decidable' tt && is-decidable' ff



The Decidability Problem

In classical mathematics every proposition P is decidable, because
the law of excluded middle holds in general.

But in constructive mathematics, like in programming, if we want
to say that P is decidable, we have to actually compute the answer
of whether or not P holds.

Therefore, the law of excluded middle does not hold in general,
because there are questions that we cannot decide
computationally: for example, the question of whether two
programs are equal, or whether a program halts.



The Decidability Problem

So in constructive type theory, the Booleans will not do as our type
of propositions. We need to use a more general type, that has an
interpretation of truth and falsity, but that we cannot in general
decide whether a given term of that type is true or false.

Using the propositions-as-types interpretation, the type of
propositions is... Type itself.

A type A : Type can

▶ hold (i.e. if we can construct a term a : A),

▶ be shown to not hold (i.e. if we can prove a term of it cannot
be constructed),

but we cannot decide in general whether a given type has a term
that we can construct or not.
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MLTT in Agda

(a) Function types →,

(b) Natural numbers N,

(c) The unit 1 and empty 0 types,

(d) Disjoint union types +,

(e) Binary product types ×,

(f) Dependent function types Π,

(g) Dependent pair types Σ,

(h) Identity types = (Lecture 3),

(i) Type universes U0,U1, ... (Lecture 3).



Propositions-as-types

Let’s interpret Type-valued propositional logic with MLTT in Agda.
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▶ Disjunction,
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Propositions-as-types – Truth

When is a proposition true, constructively?

When a proof of the proposition can be yielded. If P is a type
representing a proposition, then p : P is a proof of that proposition.

So, if we can exhibit an element of a type, then the proposition
that type interprets is true.

But which type should represent base truth itself?



Propositions-as-types – Truth

Technically, any type that we can exhibit a term of can represent
truth, but it would feel strange to use (for example) N.

This is because there are many elements of N and each has a
different computational meaning. It would be better to choose a
type that has a single element, so that once we see the element we
know that this just means ”true”, with no additional computation
content.

Truth is interpreted by a unit type 1 : Type – a type with just one
element – which we now define inductively.



Propositions-as-types – Truth

Γ ⊢ 1 : Type
(1-Form)

Γ ⊢ ⋆ : 1
(1-Intro)

Γ, x : 1 ⊢ P(x) : Type Γ ⊢ p : P(⋆)

Γ, x : 1 ⊢ 1-induction(P, p, x) : P(x)
(1-Elim)

Γ, x : 1 ⊢ P(x) : Type Γ ⊢ p : P(⋆)

Γ ⊢ 1-induction(P, p, ⋆) = p : P(⋆)
(1-Comp)



Propositions-as-types – Truth

data 1 : Type where

⋆ : 1

1-induction : (P : 1 → Type)

→ (p⋆ : P ⋆)
→ (x : 1) → P x

1-induction P p⋆ ⋆ = p⋆

1-elim : A → 1 → A

1-elim {A} = 1-induction (λ _ → A)



Propositions-as-types

So, let’s interpret Type-valued propositional logic.
In order to interpret propositional logic, we need interpretations of:

▶ Truth,

▶ Falsity,

▶ Implication,

▶ Negation,

▶ Disjunction,

▶ Conjunction.



Propositions-as-types – Falsity

If truth is an inhabited type, then falsity is an uninhabited type.

Falsity is interpreted by an empty type 0 : Type – a type with no
introduction rules.



Propositions-as-types – Falsity

Γ ⊢ 0 : Type
(0-Form)

Γ, x : 0 ⊢ P(x) : Type

Γ, x : 0 ⊢ 0-induction(P, x) : P(x)
(0-Elim)



Propositions-as-types – Falsity

data 0 : Type where

0-induction : (P : 0 → Type)

→ (x : 0) → P x

0-induction P ()

0-elim : 0 → A

0-elim {A} = 0-induction (λ _ → A)



Propositions-as-types

So, let’s interpret Type-valued propositional logic.
In order to interpret propositional logic, we need interpretations of:
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Propositions-as-types – Implication

Implication introduction says that P ⇒ Q when an assumption of
that P is true leads to the truth of Q.

With our interpretation of truth, this means that any term of P
allows us to construct a term of Q.

So to interpret implication, we need a type whose terms are
procedures that take terms of P and construct terms of Q.

This is just the function type P → Q! We introduced the typing
rules of these last lecture, and they are built-in to Agda.



Propositions-as-types – Implication

Implication is interpreted by function types. To illustrate this, the
principle of modus ponens is just function application.

modus-ponens : (A → B) → A → B

modus-ponens f a = f a

Further, implication should be transitive – which is indeed the case
for function application. From a programming point of view, this is
just the composition of two functions.

→-transitive : (A → B) → (B → C) → (A → C)

→-transitive f g a = g (f a)

_◦_ : (B → C) → (A → B) → (A → C)

g ◦ f = λ a → g (f a)



Propositions-as-types

So, let’s interpret Type-valued propositional logic.
In order to interpret propositional logic, we need interpretations of:

▶ Truth,

▶ Falsity,

▶ Implication,

▶ Negation,

▶ Disjunction,

▶ Conjunction.



Propositions-as-types – Negation

Negation introduction says that a proposition P is false ¬P if it
implies a contradiction.

How can we interpret the idea that P leads to a contradiction as a
type?
Hint: Have a think about what would constitute a contradiction to
our theory.



Propositions-as-types – Negation

Constructing a term x : 0 would be contradictory! That would say
that we have a way to introduce a term of a type that has no rules
of introduction.

Negation ¬P is interpreted as “P implies 0”. This is a type that
we do not define inductively – it arises from types we have already
built (i.e. function types and the empty type).

¬_ : Type → Type

¬ X = X → 0

modus-tollens : (A → B) → ¬ B → ¬ A

modus-tollens f ¬b = ¬b ◦ f



Propositions-as-types

So, let’s interpret Type-valued propositional logic.
In order to interpret propositional logic, we need interpretations of:

▶ Truth,

▶ Falsity,

▶ Implication,

▶ Negation,

▶ Disjunction,

▶ Conjunction.



Propositions-as-types – Disjunction

Disjunction introduction says that if we have P we have P ∨ Q,
and also if we have Q we have P ∨ Q.

In imperative programming, this is like a Union class. There are
two constructors: either by using an element of P or by using an
element of Q.

In MLTT, these are called binary sum types, or tagged unions.



Propositions-as-types – Disjunction

Γ ⊢ A : Type Γ ⊢ B : Type

Γ ⊢ A+ B : Type
(+-Form)

Γ ⊢ A : Type Γ ⊢ B : Type Γ ⊢ a : A

Γ ⊢ inl a : A+ B
(+-Introl)

Γ ⊢ A : Type Γ ⊢ B : Type Γ ⊢ b : B

Γ ⊢ inr b : A+ B
(+-Intror)



Propositions-as-types – Disjunction

data _+_ (A B : Type) : Type where

inl : A → A + B

inr : B → A + B



Propositions-as-types – Disjunction

Γ, x : A+ B ⊢ P(x) : Type Γ,a:A⊢pa(a):P(inl a)
Γ,b:B⊢pb(b):P(inr b)

Γ, x : A+ B ⊢ +-induction(P, pa, pb, x) : P(x)
(+-Elim)

Γ, x : A+ B ⊢ P(x) : Type Γ,a:A⊢pa(a):P(inl a)
Γ,b:B⊢pb(b):P(inr b)

Γ, a : A ⊢ +-induction(P, pa, pb, inl a) = pa(a) : P(inl a)
(+-Compl)

Γ, x : A+ B ⊢ P(x) : Type Γ,a:A⊢pa(a):P(inl a)
Γ,b:B⊢pb(b):P(inr b)

Γ, b : B ⊢ +-induction(P, pa, pb, inr b) = pb(b) : P(inr b)
(+-Compr)



Propositions-as-types – Disjunction

+-induction : (P : A + B → Type)

→ (pa : (a : A) → P (inl a))

→ (pb : (b : B) → P (inr b))

→ (x : A + B) → P x

+-induction P pa pb (inl a) = pa a

+-induction P pa pb (inr b) = pb b

+-elim : A → A → B + C → A

+-elim {A} {B} {C} al ar
= +-induction (λ _ → A) (λ _ → al) (λ _ → ar)



Propositions-as-types – Disjunction

Note that the induction and elim functions for +-types are
similar to those for Bool, which makes sense given that both have
two explicit ‘options’.

In fact, we can write the standard if-then-else function using
+-types, rather than Booleans (which is the case in most
programming contexts).

if_then_else_ : A + B → C → C → C

if x then y else z = +-elim y z x



Propositions-as-types – Disjunction

The interpretation of disjunction is the first key difference between
classical and constructive logic.

In classical logic, knowing that P ∨Q holds does not tell you which
of the two cases holds. In order to decide a disjunction classically,
you have to know that one of the two sides cannot hold.

modus-tollendo-ponens : A + B → ¬ A → B

modus-tollendo-ponens (inl a) ¬a = 0-elim (¬a a)

modus-tollendo-ponens (inr b) ¬a = b

But, in constructive type theory, the ’tag’ of the term (i.e. inl or
inr) specifies explicitly whether the proof is “in the left” or “in the
right” side of the disjunction.



Propositions-as-types

So, let’s interpret Type-valued propositional logic.
In order to interpret propositional logic, we need interpretations of:

▶ Truth,

▶ Falsity,

▶ Implication,

▶ Negation,

▶ Disjunction,

▶ Conjunction.



Propositions-as-types – Conjunction

Finally, conjunction introduction says that if we have P and Q
then we have P ∧ Q.

In imperative programming, this is like a Pair class:

public class Pair<K,V> {

private K fst;

private V snd;

public K getFst() { return fst; }

public V getSnd() { return snd; }

}

In MLTT, they are called binary product types.



Propositions-as-types – Conjunction

Γ ⊢ A : Type Γ ⊢ B : Type

Γ ⊢ A× B : Type
(×-Form)

Γ ⊢ A : Type Γ ⊢ B : Type Γ ⊢ a : A Γ ⊢ b : B

Γ ⊢ (a, b) : A× B
(×-Intro)



Propositions-as-types – Conjunction

Although the introduction rule for binary product types can be
defined by giving a single constructor using data...

data _×_ (A B : Type) : Type where

_,_ : A → B → A × B

...we can also define it by giving its two destructors using record;
which are like classes in other programming languages.

record _×_ (A B : Type) : Type where

field

fst : A

snd : B

constructor _,_



Propositions-as-types – Conjunction

To compare the data and record definitions another way:

▶ The data definition defines ×-types by interpreting
conjunction introduction,

A,B ⊢ A ∧ B

▶ The record definition defines ×-types by interpreting
conjunction elimination,

A ∧ B ⊢ A, A ∧ B ⊢ B.



Propositions-as-types – Conjunction

Also, optionally, records can contain methods, just like in other
programming languages. The two below are just illustrative, as we
will always prefer to directly use the eliminators.

record _×_ (A B : Type) : Type where

field

fst : A

snd : B

constructor _,_

getFst : A

getFst = fst

getSnd : B

getSnd = snd



Propositions-as-types – Conjunction

Γ, x : A× B ⊢ P(x) : Type Γ, a:A,b:B ⊢ p((a, b)) : P((a, b))

Γ, x : A× B ⊢ ×-induction(P, p, x) : P(x)
(×-Elim)

Γ, x : A× B ⊢ P(x) : Type Γ, a:A,b:B ⊢ p((a, b)) : P((a, b))

Γ, x :A,y :B ⊢ ×-induction(P, p, (x , y)) = p((x , y)) : P((x , y))
(×-Comp)



Propositions-as-types – Conjunction

×-induction : (P : A × B → Type)

→ (p× : (a : A) (b : B) → P (a , b))

→ (x : A × B) → P x

×-induction P p× (a , b) = p× a b

×-elim : (A → B → C) → (A × B → C)

×-elim {A} {B} {C} = ×-induction (λ _ → C)

The elimination principle for binary products is just the act of
uncurrying the function. We can of course also curry the function.

uncurry = ×-elim

curry : (A × B → C) → (A → B → C)

curry f a b = f (a , b)



Propositions-as-types – Example & Type Families

As with our Boolean logic, let’s add numbers to our
propositions-as-types interpretation, so that we can reason about
them.

is-odd : N → Type

is-odd 0 = 0
is-odd 1 = 1
is-odd (succ (succ n)) = is-odd n

For any n : N, the term is-odd n : Type is a dependent type,
because it depends on the value of n : Type.

▶ If n is indeed odd, then is-odd n = 1 : Type, and therefore
the type is inhabited.

▶ Otherwise, is-odd n = 0 : Type, and therefore it is empty.



Propositions-as-types – Example & Type Families

A term p : is-odd n is hence a proof that n is odd, because if it
were even, it would have been impossible for us to have
constructed such a term p.

5-is-odd : is-odd 5

5-is-odd = ⋆

84-is-not-odd : ¬ (is-odd 84)

84-is-not-odd ()

We call is-odd : N → Type itself a (dependent) type family.



Lecture Outline

1. Recap – Definition of N and functions on N
2. Boolean Logic

▶ tt, ff, ⇒, !, ||, and &&

3. The Decidability Problem
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Dependent Types

To complete our propositions-as-types interpretation of
constructive logic, we need to interpret the two quantifier
connectives of predicate logic:

▶ Universal quantification ∀x : X ,Px ,

▶ Existential quantification ∃x : X ,Px .

These quantifiers are interpreted by Martin-Lof’s dependent types:

▶ Π-types interpret “for all” statements,

▶ Σ-types interpret “there exists” statements.



MLTT in Agda

(a) Function types →,

(b) Natural numbers N,

(c) The unit 1 and empty 0 types,

(d) Disjoint union types +,

(e) Binary product types ×,

(f) Dependent function types Π,

(g) Dependent pair types Σ,

(h) Identity types = (Lecture 3),

(i) Type universes U0,U1, ... (Lecture 3).



Dependent Types – Π-types

Earlier, we introduced the dependent type family,
is-odd : N → Type. But this isn’t the first type family we’ve seen:

▶ + , × : Type → Type → Type are binary type families,

▶ Each of the induction principles featured functions
P : X → Type – these are also type families.

These induction principles also featured dependent functions
p : (x : X ) → P(x).

N-induction : -- Type family

(P : N → Type)

→ (p0 : P zero)

-- Dependent function

→ (ps : (n : N) → P n → P (succ n))

...



Dependent Types – Π-types

Given a type family P : X → Type, a dependent function
p : (x : X ) → P(x) is a function whose domain type P(x) : Type
depends on the value of the given argument x : X .

Clearly, as we have already seen a fair few dependent functions,
they are built-in to Agda, just like non-dependent functions.

While non-dependent functions f : A → B are terms of function
types, dependent functions f : (x : X ) → Y x are terms of Π-types.



Dependent Types – Π-types

Γ ⊢ X : Type Γx : X ⊢ Y (x) : Type

Γ ⊢ Π(x :X )Y : Type
(Π-Form)

Γ, x : X ⊢ y : Y (x)

Γ ⊢ λ(x : X ).y : Π(x :X )Y
(Π-Intro)

Γ ⊢ f : Π(x :X )Y Γ ⊢ a : X

Γ ⊢ f (a) : Y (a)
(Π-Elim)

Γ, x : X ⊢ y : Y (x) Γ ⊢ a : X

Γ ⊢ (λ(a : A).b) (a) = y [a/x ] : B(a)
(Π-Comp)



Dependent Types – Π-types

We can align Agda’s syntax for Π-types with MLTT’s.

Π : {X : Type} (Y : X → Type) → Type

Π {X} Y = (x : X) → Y x

syntax Π {X} (λ x → y) = Π x : X , y

Note that non-dependent functions are just special cases of
dependent functions, where the type family P : X → Type is
constant.

(X → Y ) = Π x : X ,Y



Dependent Types – Π-types

While non-dependent functions interpret implication, dependent
functions interpret universal quantification. That is, to prove
∀x : X ,P x holds, we need to define a dependent function
f : Π x : X ,P x .

As an example, let’s prove that we can decide whether
is-odd n : Type holds for every n : N. This proof is inductive,
following the definition of is-odd : N → Type itself.

is-decidable : Type → Type

is-decidable X = X + ¬ X

odd-or-even : Π n : N , is-decidable (is-odd n)

odd-or-even 0 = inr 0-elim
odd-or-even 1 = inl ⋆
odd-or-even (succ (succ n)) = odd-or-even n



Dependent Types – Π-types

Let’s see another example: first we define the binary type family
that corresponds to the order on natural numbers.

_<_ : N → N → Type

0 < 0 = 0
0 < succ _ = 1
succ _ < 0 = 0
succ n < succ m = n < m

Then, we prove that, for every n : N, it is the case that n < succ n.

succ-is-bigger : Π n : N , (n < succ n)

succ-is-bigger zero = ⋆
succ-is-bigger (succ n) = succ-is-bigger n



MLTT in Agda

(a) Function types →,

(b) Natural numbers N,

(c) The unit 1 and empty 0 types,

(d) Disjoint union types +,

(e) Binary product types ×,

(f) Dependent function types Π,

(g) Dependent pair types Σ,

(h) Identity types = (Lecture 3),

(i) Type universes U0,U1, ... (Lecture 3).



Dependent Types – Σ-types

Given a type family Y : X → Type, how do we interpret the
concept that there exists a term x : X such that Y x : Type is
true?

The way existential quantification works is the second key
difference between constructive and classical logic. Classically, we
can show that there exists an x : X that satisfies Y x by showing
that the lack of such an x : X leads to a contradiction.

But this argument doesn’t hold in constructive maths:
constructively, to show that Y x holds, we have to actually specify
which x : X is satisfactory.



Dependent Types – Σ-types

So, to show that ∃ x : X ,Y x , we need to provide a pair of terms:

1. A term x : X , called the witness of Y ,

2. A proof term Y x : Type, which depends on the witness.

In MLTT, these dependent pairs are called Σ-types. As with
non-dependent pairs (i.e. ×-types), we define them using record.

record Σ {X : Type} (Y : X → Type) : Type where

constructor _,_

field

fst : X

snd : Y fst

syntax Σ {X} (λ x → y) = Σ x : X , y



Dependent Types – Σ-types

Γ ⊢ X : Type Γ, x : X ⊢ Y (x) : Type

Γ ⊢ Σ(x :X )Y : Type
(Σ-Form)

Γ, x : X ⊢ Y (x) : Type Γ ⊢ w : X Γ ⊢ y : Y (a)

Γ ⊢ (w , p) : Σ(w :X )Y
(Σ-Intro)

Γ,z:Σ(x :X )Y

⊢P(z):Type
Γ, w :X ,

y :Y (w) ⊢ p((w , y)) : P((w , y))

Γ, z : Σ(x :X )Y ⊢ Σ-induction(P, p, z) : P(z)
(Σ-Elim)

Γ,z:Σ(x :X )Y

⊢P(z):Type
Γ, w :X ,

y :Y (w) ⊢ p((w , y)) : P((w , y))

Γ, a:X
b:Y (a) ⊢ Σ-induction(P, p, (a, b)) = p((a, b)) : P((a, b))

(Σ-Comp)



Dependent Types – Σ-types

Σ-induction : {X : Type} {Y : X → Type}

→ (P : Σ Y → Type)

→ (p : (w : X) (y : Y w) → P (w , y))

→ (z : Σ Y) → P z

Σ-induction P p (x , y) = p x y

We can now re-define ×-types as the non-dependent case of
Σ-types (as with non-dependent functions and Π-types).

_×_ : Type → Type → Type

A × B = Σ a : A , B

×-induction = Σ-induction



Dependent Types – Σ-types

As an example of using Σ-types, let’s prove that, for every n : N,
there exists an m : N larger than it.

always-a-bigger-number : Π n : N , Σ m : N , n < m

always-a-bigger-number n = succ n , succ-is-bigger n

In the above, we chose to specify succ n as the witness that there
is a number bigger than n. But we could have chose succ(succ n)
or add 1000 n...

The term that we choose as a witness changes the computational
content of the resulting proof. Therefore, in constructive type
theory, the method of proving something is relevant — not just the
fact that we have proved it.

This is called proof relevance.



Next time...

Next lecture, we will look at formalising the identity type and type
universes of MLTT in Agda, and see how this expands our idea of
proof relevance in type theory.

Please join me in the exercise classes, where you can get
experience of programming Type Theory in Agda yourself!


