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Motivation

The first question we shall try to answer in this course is

What are types?

Types can be understood from two perspectives:

▶ Their use in foundational theories of mathematics,

▶ Their use in typed programming languages.

The main goal of this course is to show you that when we work
with Type Theory in Agda, these two perspectives become one and
the same.
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Motivation – Types in Mathematics

In traditional set-theoretic foundations of mathematics, objects
(such as numbers, the Booleans, shapes, etc.) are collected into
sets.

For example, the number 5 is an element of

▶ the set of natural numbers

N := {0, 1, 2, 3, 4, 5, ...},

▶ the set of odd numbers

No := {n ∈ N | ∃a.2a+ 1 = n},

▶ the set of prime numbers

Np := {n ∈ N | n is a prime number},

▶ etc.



Motivation – Types in Mathematics

This differs to the type-theoretic perspective, where objects are
instead “organised according to how they are constructed, and
there are different types of construction” (Andrej Bauer, 2018).
Therefore, because mathematical objects arise uniquely from these
rules of construction, they have a unique type.

For example, the number 5 is a term of

▶ the type of natural numbers N;

5 paired with a proof that ∃a.2a+ 1 = 5 is a term of

▶ the type of odd numbers No ;

5 paired with a proof that it is a prime number is a term of

▶ the type of prime numbers Np,

Note that, in type theory, logical statements and proofs themselves
are objects on the same level as (for example) numbers.
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Motivation – Types in Programming

You may have already come across types in programming, because
many programming languages are typed. For example, in Java:

▶ The terms true and false have type Boolean,

▶ The terms 5 and 3 has type int,

▶ The expression 5 + 3 has type int,

▶ The operator + (effectively) has type (int , int) -> int.

How do types help us as programmers?



Motivation – Types in Programming

Types stop us from writing nonsense in our programs!

For example, the expression true + 5, which adds a Boolean and
an int, doesn’t make any sense. In an untyped language, at
runtime, trying to evaluate this expression will cause a run-time
error or unpredictable behaviour.

But Java’s type system prevents us writing this in the first place.

▶ The + operator (effectively) has type (int , int) -> int.

▶ If we pretend it has type (Boolean , int) -> int, then we
get an expresison (e.g. true + 5) that is not well-typed...

▶ This results in a compile-time error, which is much more
helpful to a programmer than a runtime error.



Motivation

So, what are types?

▶ Types are a way of organising mathematical objects and terms
of a programming language by rules of construction.

▶ The type of an object or term is unique.

▶ The type of an object is used to determine its behaviour, such
as which operations can manipulate it.

▶ Types are even used to construct logical statements and
proofs.

While these two quick perspectives can help us to understand
types, type theory is a very deep and broad field of mathematics
and theoretical computer science.

One that stretches back to the early 1900s...
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A Brief History of Type Theory

1908: Russell introduces type
theory as a foundation of
mathematics that avoids the
inconsistencies of naive set
theory.

1934: Curry discovers that
types can be viewed as
(constructive) logical axioms.

1936: Church develops the
λ-calculus, a foundational
‘programming language’ used to
model functions and application.
Infinite loops can be defined,
which are inconsistent when the
calculus is viewed as logic.

1940: Type theory comes to
the rescue again! Church
introduces the simply typed
λ-calculus, whose typing rules
prevent nonterminating terms
from being derived.

1969: Howard, following
Curry’s perspective, discovers
the simply type λ-calculus
corresponds exactly to
(constructive) natural
deduction.

And thus began the quest for
new type theories...



A Brief History of Type Theory

Following this Curry-Howard correspondence, also known as the
propositions-as-types interpretation because types are viewed as
mathematical propositions, Per Martin-Lof introduced his
constructive type theory in 1972.

By utilising dependent types — types that are dependent on terms
of other types — Martin-Lof Type Theory (MLTT) corresponds to
to (constructive) predicate logic, and is thus a very rich foundation
of mathematics. It has been used to formalise a wide variety of
proofs in constructive mathematics, and is the basis of the more
recent univalent type theory (2012).

From now on in this course, when we say “Type Theory” we mean
dependent type theories and systems based on MLTT, such as
Agda’s type system.
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Course Outline

In this course, we will:

▶ Learn about type theory — at first formally, but then by using
Agda.

▶ Gain experience programming in a dependently-typed
programming language.

▶ Formalise mathematical proofs, and see how type theory lends
itself to this task.

In the lectures, we will build up our framework for MLTT in Agda.
In the exercise classes, we will use this framework to define various
mathematical structures and prove things about them!

You do not need to install Agda locally! (But feel free to.)



Course Outline

Lecture 1: Introduction

Lecture 2: Propositions as types

Lecture 3: Equality and equivalence

Lecture 4: Towards univalent type theory
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Formal Notation of Type Theory

Formally, a type theory is made up of typing rules.
Typing rules are a deductive system of typing judgements.
And typing judgements allow us to reason about type assignments.

Before we can introduce MLTT, we first need to understand these
three fundamental concepts that are common across different type
theories.



Formal Notation of Type Theory – Type Assignments

A type assignment looks like this:

x : A

This says “the object x has type A”.



Formal Notation of Type Theory – Type Assignments

Writing x : A is fundamentally different to writing x ∈ A in set
theory (which means “the object x is a member of the set A”).

In set theory, stating x ∈ A is always a valid logical assertion, and
asking whether x ∈ A is always a valid question. But in type
theory, terms just have types — it makes no sense to “ask”
whether or not x : A.

To illustrate, the following is a valid logical statement in set theory:

((x ∈ Z) ∧ (x ≥ 0)) → x ∈ N

But in type theory, this assertion makes no sense.

Instead, the theory’s typing judgements and typing rules are used
to assign the correct types to the theory’s objects.



Formal Notation of Type Theory – Typing Judgements

A typing judgement looks like this:

Γ ⊢ x : A

This says “given a list of typing assignments
Γ := {x0 : A0, ..., xn : An}, it is the case that x : A”.

The list of typing assignments Γ is often called the context.



Formal Notation of Type Theory – Typing Rules

A typing rule looks like this:

Γ ⊢ f : A → B Γ ⊢ x : A
Γ ⊢ f (x) : B

This says “if the object f has type A → B (i.e. it is a function that
takes an A and returns a B) in the context Γ, and the object x has
type A in the context Γ, then the object f (x) has type B in the
context Γ”.



Formal Notation of Type Theory

A type theory is made up of typing rules, which are a deductive
system of typing judgements, which are themselves a way of
reasoning about type assignments.

In order to really understand this, we need to see an example type
theory — let’s choose something a bit simpler than MLTT:
Church’s simply typed λ-calculus.
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Church’s simply typed λ-calculus

A type τ in the simply typed λ-calculus is either a base type or a
function type. In this example, we give a single base type of
natural numbers N:

τ := N | τ1 → τ2

A term M of the calculus is either:

▶ A constant of a base type (e.g. a number 0, 1, 2, ...),

▶ A variable x , y , z , . . .,

▶ A function λx .M1 that binds the argument variable x to the
term M1,

▶ An application of two terms M1M2.

Additionally, function applications can be reduced by replacing
every bound variable x in M1 with M2:

(λx .M1)M2 ⇝ M1[x/M2]



Church’s simply typed λ-calculus

Typing rules ensure we can only produce well-typed terms — terms
that are nonsensical (like 5z) and which don’t fully reduce (like
(λx .xx)(λx .xx)) will be invalid constructions.

The typing rules for constants are straightforward: in any context,
we can introduce any constant. We introduce the natural numbers
by the Peano axioms.

Γ ⊢ 0 : N
(Zero) Γ ⊢ n : N

Γ ⊢ succ n : N
(Succ)

The typing rule for variables is also clear: we can introduce a
variable x of any type τ by simply adding it to our context.

Γ, x : τ ⊢ x : τ
(Var)



Church’s simply typed λ-calculus
The latter two typing rules are more intricate.

The typing rule for functions says that if the type assignment x : τ
is in the context, then given a term M : σ, we can build the
function that binds this variable to this term

Γ, x : τ ⊢ M : σ

Γ ⊢ λ(x : τ).M : (τ → σ)
(Fun)

Finally, the typing rule for application ensures that the term M1

that we are applying to M2 is indeed a function — i.e. the type of
M1 must be a function type.

Γ ⊢ M1 : τ → σ Γ ⊢ M2 : τ
Γ ⊢ M1M2 : σ

(App)

Therefore, in the simply typed calculus, we cannot build nonsense
terms such as 5z or nonterminating ones such as (λx .xx) (λx .xx).
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MLTT

In 1972, Per Martin-Lof introduced his type theory (MLTT), which
we shall see corresponds to (constructive) predicate logic, and is
thus a very rich foundation of mathematics. It has been used to
formalise much of constructive mathematics, and is the basis of
univalent type theory.

We will explore MLTT by first introducing its key types and type
families via their typing rules. However, after some time we will
get bored with this semi-formal mathematical approach, and dive
into programming with MLTT in the proof assistant Agda!



MLTT

Each type or family of types in MLTT usually has four kinds of
typing rules:

▶ Formation rules, which tell us how to form those types,

▶ Introduction rules, which tell us how to construct terms of
those types,

▶ Elimination rules, which tell us how to destruct terms of those
types,

▶ Computation rules, which tell us how elimination rules are
applied to reduce introduced terms.

There are thus quite a few more typing rules for MLTT than for
simple type theory! We will focus on the formation, introduction,
elimination and computation rules of the key types and type
families of the theory. Namely...



MLTT

(a) Function types →,

(b) Natural numbers N,

(c) The unit 1 and empty 0 types, (Lecture 2)

(d) Disjoint union types +, (Lecture 2)

(e) Binary product types ×, (Lecture 2)

(f) Dependent function types Π, (Lecture 2)

(g) Dependent pair types Σ, (Lecture 2)

(h) Identity types = (Lecture 3),

(i) Type universes U0,U1, ... (Lecture 3).
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MLTT – Function Types

The formation rule for function types simply says that if A and B
are types, then A → B is a type:

Γ ⊢ A : Type Γ ⊢ B : Type

Γ ⊢ (A → B) : Type
(→-Form)

The introduction rule for function types is just the ‘Fun’ rule from
the simply-typed λ-calculus:

Γ, x : A ⊢ b : B

Γ ⊢ λ(x : A).b : (A → B)
(→-Intro)

Meanwhile, the elimination rule is also just the ‘App’ rule:

Γ ⊢ f : A → B Γ ⊢ a : A
Γ ⊢ f (a) : B

(→-Elim)



MLTT – Function Types

The computation rule for function types is also just the
computation rule of the λ-calculus: (λx .M1)M2 ⇝ M1[x/M2]

Γ, x : A ⊢ b : B Γ ⊢ a : A

Γ ⊢ (λ(x : A).b) (a) = b[a/x ] : B
(→-Comp)

Computation rules use a new kind of typing judgement called
judgemental equality.

The judgement x1 = x2 : X says that the terms x1 : X and x2 : X
are literally just different names for the same term.

Therefore, because x1 = x2 we have x1 ⇝ x2.



MLTT – Function Types
▶ Formation rules tell us how to form those types,

Γ ⊢ A : Type Γ ⊢ B : Type

Γ ⊢ (A → B) : Type
(→-Form)

▶ Introduction rules tell us how to construct terms of those
types,

Γ, x : A ⊢ b : B

Γ ⊢ λ(x : A).b : (A → B)
(→-Intro)

▶ Elimination rules tell us how to destruct terms of those types,

Γ ⊢ f : A → B Γ ⊢ a : A
Γ ⊢ f (a) : B

(→-Elim)

▶ Computation rules tell us how elimination rules are applied to
reduce introduced terms.

Γ, x : A ⊢ b : B Γ ⊢ a : A

Γ ⊢ (λ(x : A).b) (a) = b[a/x ] : B
(→-Comp)
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MLTT – Natural Numbers

The formation rule for natural numbers simply says that there is a
type of natural numbers:

Γ ⊢ N : Type
(N-Form)

The introduction rule for natural numbers are just the Peano
axioms (which we saw previously as the ‘Zero’ and ‘Succ’ rules of
our example simply-typed λ-calculus):

Γ ⊢ 0 : N
(N-Intro0)

Γ ⊢ n : N
Γ ⊢ succ n : N

(N-Intros)



MLTT – Natural Numbers

The elimination rule for natural numbers is as follows:

Γ, n : N ⊢ P(n) : Type Γ ⊢ p0 : P(0)
Γ,n:N,pn:P(n)

⊢ps(n,pn):P(succ n)

Γ, n : N ⊢ N-induction(P, p0, ps , n) : P(n)
(N-Elim)

This looks quite complicated at first glance!

However, once we recognise that this is just the induction principle
on natural numbers — that we recall from A-Level or equivalent
mathematics — the rule should become clear: If...

▶ For every n : N there is a type P(n) : Type

▶ There is a term p0 of type P(0) : Type,

▶ For every n : N and pn : P(n), there is a procedure ps for
constructing a term ps(n, pn) of type P(succ n) : Type,

Then, we can construct a term of type P(n).



MLTT – Natural Numbers

Γ ⊢ N : Type
(N-Form)

Γ ⊢ 0 : N
(N-Intro0)

Γ ⊢ n : N
Γ ⊢ succ n : N

(N-Intros)

Γ, n : N ⊢ P(n) : Type Γ ⊢ p0 : P(0)
Γ,n:N,pn:P(n)

⊢ps(n,pn):P(succ n)

Γ, n : N ⊢ N-induction(P, p0, ps , n) : P(n)
(N-Elim)

Only the computation rules remain, which tell us how the
elimination rule should reduce terms arising from either the two
introduction rules, i.e. zero and successors:

Γ, n : N ⊢ P(n) : Type Γ ⊢ p0 : P(0)
Γ,n:N,pn:P(n)

⊢ps(n,pn):P(succ n)

Γ ⊢ N-induction(P, p0, ps , 0) = p0 : P(0)
(N-Comp0)

Γ, n : N ⊢ P(n) : Type Γ ⊢ p0 : P(0)
Γ,n:N,pn:P(n)

⊢ps(n,pn):P(succ n)

Γ, n : N ⊢ N-induction(P,p0,ps ,succ n)
=ps(n,N-induction(P,p0,ps ,n))

: P(succ n)
(N-Comps)



MLTT – Natural Numbers

The natural numbers are an inductive type. Defining inductive
types in MLTT follows a straightforward recipe:

▶ Form the type,

▶ Define a finite number of introduction rules for the type, with
at least one of those rules as a ‘base rule’,

▶ Define a single inductive elimination rule,

▶ Define a computation rule for each introduction rule.

We could follow this recipe to define formal typing rules for more
types, but defining operations and proofs would eventually become
unwieldy in this formal framework.

So let’s ditch it and learn about MLTT using Agda instead!



Lecture Outline

1. Motivation

2. A Brief History of Type Theory

3. Course Outline

4. Formal Notation of Type Theory

5. Church’s simply typed λ-calculus

6. Martin-Lof Constructive Type Theory (MLTT)

7. Introducing Agda!



Introducing Agda!

Dependently-typed programming languages based on MLTT have
been developed for the past fifty years (twice the age of MGS!).

These languages emphasise the computational aspects of MLTT
and double as proof assistants, meaning we can run our proofs and
compute meaningful information from them.



Introducing Agda!

Agda is the latest language in this long tradition. The first version
of Agda (1999) was written by Catarina Coquand, while the
second (2007) is by Ulf Norell and Andreas Abel.

We will not investigate Agda’s type system formally, due to its
complexity, but we will use a subset of Agda’s features to continue
our investigation of MLTT.



Introducing Agda!

In the final part of this lecture, we will take a look at defining some
basic functions in Agda, and defining the natural numbers.

module lecture1 where

Agda infamously uses ‘Set‘ for the type of types (I believe many of
the implementers now regret this). However, there is a quick fix...

Type = Set

We add two variables ‘A‘ and ‘B‘, for types, to our context.

variable A B : Type



Introducing Agda!

Agda already has built-in support for defining functions. The
syntax of Agda is similar to the syntax of Haskell. The : symbol
starts the type definition, while the = symbol starts the definition
of the term itself.

K : A → B → A

K a b = a

Defining this function is like adding the following two rules to our
theory:

A : Type B : Type

K (a, b) : A

A : Type B : Type

K (a, b) = a : A



MLTT in Agda

(a) Function types →,

(b) Natural numbers N,

(c) The unit 1 and empty 0 types, (Lecture 2)

(d) Disjoint union types +, (Lecture 2)

(e) Binary product types ×, (Lecture 2)

(f) Dependent function types Π, (Lecture 2)

(g) Dependent pair types Σ, (Lecture 2)

(h) Identity types = (Lecture 3),

(i) Type universes U0,U1, ... (Lecture 3).



MLTT in Agda – Function Types

Despite Agda having built-in support for functions, we can actually
re-define their typing rules.

→-Form : (A : Type) (B : Type) → Type

→-Form A B = A → B

→-Elim : (f : A → B) (a : A) → B

→-Elim f a = f (a) -- Also written `f a`

The arguments in {curly braces} are implicit: when we call a
function, Agda tries to work out the value of the implicit
arguments itself.

Unfortunately, we cannot define the introduction rule in Agda; it is
instead taken care of directly in Agda’s type system. Note also
that the computation rule is derived automatically, as with the K
function.
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MLTT in Agda – Natural Numbers

Agda has built-in support for defining inductive types via the recipe
we discussed earlier, using the keyword data. The formation rule
and introduction rules for natural numbers can be thus given in a
data definition.

data N : Type where -- N-Form
zero : N -- N-Intro0
succ : N → N -- N-Intros



MLTT in Agda – Natural Numbers

In order to formalise the elimination rule of natural numbers, we
have to give both of its computation rules. We do this by pattern
matching on n : N.

-- N-Elim
N-induction : (P : N → Type)

→ (p0 : P zero)

→ (ps : (n : N) → P n → P (succ n))

→ (n : N) → P n

N-induction P p0 ps zero = p0 -- N-Comp0
N-induction P p0 ps (succ n) = ps n IH -- N-Comps
where

IH : P n

IH = N-induction P p0 ps n



Next time...

Next lecture, we will look at formalising more types of MLTT in
Agda. Furthermore, we will illuminate the propositions-as-types
interpretation of type theory.

Please join me in the exercise classes, where you can get
experience of programming Type Theory in Agda yourself!


